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Abstract—The robotic manipulation of composite rigid-
deformable objects (i.e. those with mixed non-homogeneous
stiffness properties) is a challenging problem with clear practical
applications that, despite the recent progress in the field, it has
not been sufficiently studied in the literature. To deal with this
issue, in this paper we propose a new visual servoing method
that has the capability to manipulate this broad class of objects
(which varies from soft to rigid) with the same adaptive strategy.
To quantify the object’s infinite-dimensional configuration, our
new approach computes a compact feedback vector of 2D contour
moments features. A sliding mode control scheme is then designed
to simultaneously ensure the finite-time convergence of both
the feedback shape error and the model estimation error. The
stability of the proposed framework (including the boundedness
of all the signals) is rigorously proved with Lyapunov theory.
Detailed simulations and experiments are presented to validate
the effectiveness of the proposed approach. To the best of the
author’s knowledge, this is the first time that contour moments
along with finite-time control have been used to solve this difficult
manipulation problem.

Index Terms—Robotics, Visual-Servoing, Deformable Objects,
Sliding Mode Control, Contour Moments.

[. INTRODUCTION

HE manipulation of composite rigid-deformable objects

(CRDO) is currently an open research problem in robotics
(see our recent survey [1]). The ubiquitous nature of CRDO
motivates the development of suitable manipulation strategies
which can be used in various application scenarios, e.g., food
industry [2], robot-surgery assistance [3], cable assembly [4]
and household works [5]. To automate these types of tasks,
there are three main technical problems: (i) Efficient feedback
representation of shapes; (ii) Estimation of the sensorimotor
model of the robot-object system. (iii) Design of shaping con-
trols that can timely minimize the deformation error. Although
great progress has been achieved in this problem in recent
years, the development of control methods for CRDO has not
been suffiently studied in the literature. Our aim in this work
is to provide a solution to the above issues.
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A critical issue in shape servoing (i.e. the active shaping
of a soft object by means of robot motions) is to design a
low-dimensional feature that describes the infinite-dimensional
shape in an efficient manner [6]. Four geometric features
(point, distance, angle, and curvature) were used in [7] to
characterize deformable objects, however, these basic features
can only represent a limited type of shapes. Contour-based
descriptors have been utilized for this purpose [8]. These
methods compute features based on binary (intensity-based)
information of an image contour, which mimics the way
humans visually distinguish objects. Truncated Fourier series
was used in [9] to represent and control shapes; This idea was
generalized in [10] in the form of parameterized regression
shape features. The classical Hu moments method [11] was
extended in [12] to the case of visual contours by replacing
the region integral with a curvilinear integral, which results in
a reduced computation cost. Note that this promising approach
has not yet been used in shape servoing.

To automatically manipulate CRDO, it is essential to know
how the robot’s motion result in changes of the object’s shape;
This relation is captured by the so-called deformation Jacobian
matrix (DJM) [1]. Due to the complexity of CRDO, the exact
(i.e. analytical) calculation of the DJM might be difficult to
obtain, a situation that is further complicated by uncertainties
in the object’s mechanical properties. Therefore, most works
make use of numerical algorithms to estimate this structure
in real-time. Some examples of this approach include the
Broyden update rules [13], online optimization methods [14],
flow-based adaptive algorithms [7], deep neural networks [15]
[16], etc. Note that these previous methods have been used to
estimate the DJM of objects with “mostly” elastic properties.
In [17], a shape servoing controller is proposed for both rigid
and deformable objects that estimates the DJIM with a least-
squares method over a sliding window. However, in this and
most previous works, the stability of such online algorithms
is not rigorously proved (the design of their update rules
is generally decoupled from the motion control laws). This
condition limits the robustness of existing methods.

The design of standard visual servoing methods (including
shape servoing ones) typically relies on imposing an asymp-
totically stable equilibrium of the visual-guided task [18] [19].
However, this closed-loop stability property does not ensure
that the feedback shape error will converge to zero in a finite
amount of time. This is clearly undesirable for soft object
manipulation tasks that demand precisely shaping actions
with a deterministic convergence (e.g. in delicate surgical
procedures). Combining finite-time control with sliding mode



control (SMC) [20] is a feasible solution to deal with these
issues, as it enables to specify the convergence of the error and
is robust to model and parameter uncertainty [21]. Despite its
valuable (and controllable) stability properties, this advanced
control technique has not yet been utilized in soft object
manipulation tasks [1].

In this paper, we address the design of a visual servoing
method for manipulating CRDO with a dual-arm robot. For
that, we propose an innovative finite-time control scheme that
ensures the robust minimization of both the shape error (which
characterizes the feedback manipulation task) and the model
estimation error (which represents the estimation of the DIM).
A self-tuning adaptive update law is also presented to improve
the approximation accuracy of DJM. Although SMC has been
previously used in visual servoing tasks [22], [23], this is
the first time (to the best of the authors’ knowledge) that it
has been used in a soft object manipulation task. The main
contributions of the paper are fourfold:

1) Our approach is not only suitable for elastic objects,
but also for objects with anisotropic and time-varying
physical properties, such as CRDO.

2) Contour moments are used (for the first time) as a
feedback signal to represent the shape of CRDO.

3) A Finite-Time SMC (FTSMC) method is proposed
(and rigorously analysed) to simultaneously perform the
shape servoing task and to estimate the DJM.

4) Detailed simulations, experiments and quantitative com-
parisons are conducted to validate our new method.
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Fig. 1. Representation of dual-arm robot manipulating CRDO. In general, the
manipulation tasks includes deformation tasks and positioning tasks. The goal
is to design the velocity controller to command dual-arm robot to manipulate
CRDO into the desired configurations.

II. PROBLEM FORMULATION

In this work, the vision-based manipulation task considered
in the work is conceptually depicted in Fig. 1. Column vectors
are denoted with bold small letters v, and matrices with
bold capital letters M; The symbol (-)T represents the matrix
pseudo-inverse.

A. Dual-Arm Robot Model

Consider the configuration of a dual-arm robot, where the
vector of joint angles and end-effector pose of each robot are
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Fig. 2. Contour description in the 2D manipulation space. The contour is
defined in the image frame, where C represents the real-time feedback contour
and c* represents the desired contour.

denoted by q; € R? and r; = r;(q;) € RY, respectively,
where ¢ = 1,2 and ¢ < d. We define the augmented vectors
r=[7,r]]" € R and q = [q7,q}]" € R The differ-
ential kinematics of the dual-arm robot are = J (q) ¢, where

J(q) = diag{gl‘;, gai € R29%2d represents the standard
Jacobian matrix, which 1s assumed to be exactly known. In
this article, we consider that the robots are kinematically-
controlled [24] (i.e. that the robot’s joint positions/velocities
can be exactly determined). Furthermore, we assume that the
trajectories of the robot are free from collisions with either the

environment or amongst its arms.

B. Visual-Deformation Model

Let us define the state of the CRDO as m € R?. The
relation between the robot’s pose r and m is represented by
the (unknown) nonlinear mapping m = f,,,(r), which models
the mechanical properties of the CRDO, e.g., deformable
structures, rigid parts, and composites of both, etc. In this
article, the object’s image contour ¢ = [c{,...,ck] T er2v,
for ¢; = [u, vi]T € R?, is utilized to represent the configura-
tion of the CRDO, where NN represents the number of points
that comprise the contour, and u; and v; represent the pixel
coordinates of the ith (¢ = 1,...,N) point in the image
frame, see Fig. 2. Thus, the relation between ¢ and m can
be described by the nonlinear mapping, ¢ = f.(m) (which
captures the perspective geometry of the object’s points in the
boundary).

To actively control the shape of CRDOs, the robot’s end-
effectors must rigidly grasp the object in advance. Motion
of the controllable grippers’ pose r result in changes in the
object’s image contour c. We model this visual-motor relation
with the following expression:

c="f.(f(r)) = £.(f(r1,12)) (1

Note that the dimension 2N of the observed contour ¢ is
generally large, thus, it is inefficient to directly use it in a
shape controller as it contains redundant information. In our
approach, we use the contour information ¢ to construct a
compact feature vector, here denoted by s € RP, for p <
2N, that characterizes the object’s shape but with significantly
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fewer feedback coordinates. The relation between the robot’s
pose and such shape descriptor is modeled as follows:

5= fs(é) = fs(fc(fm(rlv r2))) (2)

By computing the time derivative of (2), we obtain the first-
order dynamic model:

ofs of . .
= r — = JS 3
S ory r; + 8r2r2 (r)r 3
where J, (r) = | 9%, &) € RP*27 represents DIM which

relates the velocity of the end-effectors with the shape feature
changes. As the mechanical properties of CRDOs are complex
and difficult to obtain, these Jacobian matrices need to be
numerically estimated.

Problem statement. Design a velocity-based controller for
a dual-arm robot to automatically deform the composite rigid-
deformable object towards the desired image shape (character-
ized by the feature vector s,;) while simultaneously estimating
the unknown matrix J(r).

C. Mathematical Properties

Before presenting our main result, some important proper-
ties are here introduced.

Lemma 1. [25] Define the function sig®(z) = |z|* sgn(z),
which holds for any x € R, where k > 0, and satisfies the
relation:

dsigh(z) = k|z[*'d, k>1 (4)
Lemma 2. [26] The inequality 0 < |x| — z tanh (z/c) < de
holds for any € > 0 and for any x € R, where § = 0.2785 is
a constant that satisfies § = e~ O+D,

Assumption 1. The DIM is di\(ided into two components,
namely, J,(r) = J, +J,, where J, is the estimation of J(r)
and J is the approximation error.

Assumption 2. The approximation error of the DIM is
bounded ||Js||” < B, for 8 as a unknown positive constant.

Definition 1. Given an arbitrary vector x € R”, let us
introduce the following vectorial power definitions [25]:

. . . T .
sigh (x) = [sig" (z1),...,sig" (z,)] €R
x| = diag {Ja1]*, ... Joal } € BT

III. FEATURE EXTRACTION ALGORITHM

In this article, we use the contour moments [27] of C to
construct the compact feature vector s. For digital images, the
ordinary moment (of order ¢ + j) is defined as follows:

N o
hij = > upviAmg, 4,5 =0,1,... (3)
k=1

where IV is the number of points on the contour and Amy =
|lck — ck—1]| represents the distance between two adjacent
pixels on the contour. The central moment of order ¢ + j of
the contour is given as:

N

nij = > (uk — ﬂ)i(vk — @)jAmk, 1,7 =0,1,... (6)
k=1

where @ and ¥ are the central coordinates, i.e., @ = hig/hoo
and v = h01/h00.
Similar to the classical Hu moments [11], the following
seven contour moments are computed:
@1 =10 + 102, P2 = (20 — M02)” + 4y
@3 = (130 — 3m2)” + (3121 — 103)°
@4 = (n30 + 7]12)2 + (103 + 7721)2

(M30 +7712)2 , >
—3(n21 + M03)

3(ns0 + 7712)22 )
—(n21 + 1M03)

©6 = (120 — Mo2) ((7730 +112)° — (21 + 7703)2) @)
+ 4m (m2 + 030) (m21 + 103)

@5 = (130 — 3m2) (30 + M12) (

+ (3121 — Mo3) (M21 + Mo3) <

(12 — 130)° ) >
—3(n21 + 103)

3(ma + 7730)22 )

— (121 + 103)

which are invariant to translation and rotation. Note, however,
that ¢, in (7) have a very large magnitude. A common

approach to rectify these variables is to use its logarithmic
form:

@7 = (3n21 — Mo3) (112 + 130) (

— (130 — 3m2) (M21 + M03) (

Note, however, that the contour moments 5, above (for
k =1,...,7) describe the object’s shape in a rotation, transla-
tion, and scale invariant manner. For the considered bi-manual
shape servoing task, such information might not be sufficient
to deform and position the object into a deisred configuration.
Therefore, further incorporate the object’s centroid coordinates
4 and v (which encodes position) within the shape feature
descriptor:

S§=u, S9g=7 )
The angle of the contour’s principal axis (which encodes
orientation in the plane) [28], is also used in the shape

descriptor:
1 2
510 = —tan~! <7711>
2 720 — 102

As the magnitudes of the ten shape coordinates 5,k are
different, we normalize them in a £1 range. For the contour
moments, this is done as:

(10)

7
Si—% > 5
P = S | 7 (1)
7 max(5;)—min(s;)’ — Ly
For centroid coordinates as:
_ 255—Cl _ 25¢—C
sg = =gt So = Tt (12)

where C,, and C} represent the width and height of the
camera, e.g., 640 x 320 and 1920 x 1080. For the principal
axis angle, it is simply done as:

510 = 510/7 (13)

Finally, the total shape feature vector is constructed as follows:
S = [817 52,83, 54, S5, 56, S7, S8, S9, SIO]T S Rlo'



As seen from (5)—(13), these features s; only depends on
the geometric image contour. Slight illumination and con-
trast changes will not significantly affect its computation.
Therefore, these features represent a more robust alternative
than the classical image moments [11], as they replace the
calculation of the region integral by a curvilinear integral.
The computation of these proposed feedback shape features
is given in Algorithm 1.

Algorithm 1 Shape feature s calculation process

Require: Fixed-size contour c;
1: Calculate the difference-operator Amy, k =1,--- | N;
Calculate the ordinary moment h;; < (5);
Calculate the central moment 7;; < (6);
Calculate contour moments @1, - - - @7 < (7);
Data compression is conducted in (8);
Calculate central coordinates < (9);
Calculate principal angle < (10);
Normalize shape feature < (11) (12) (13);
return Shape feature s;

R A A

IV. CONTROLLER DESIGN

Two methods are here described to control the shape of the
CRDO: Linear sliding mode control (LSMC) and finite-time
sliding mode control (FTSMC). In the rest of this paper, we
denote the robot’s control input as u = r.

A. Linear Sliding Mode Control

Let us first define the error variables:

e} =S — 8y, egzé—jsu (14)
and its time derivatives
é1=8—84, € =5§—Ju—Ju (15)

which we use to construct the linear sliding surfaces: [29]:

o1 =Kje; +¢€;, o3 =Ksey+& (16)

for s; as the desired shape feature, and K as symmetric
positive-definite constant matrices. Considering (15) and As-
sumption 1, we can compute the time derivative of o; as:

o1 =KiJau+ K Jou—Kisg + & (17)
and design the following velocity control input:
u=JrK7! (—oy + Ki8g — 1) (18)

where J T denotes the pseudo-inverse of the adaptive matrix
Js. To quantify the shape tracking error, we introduce the
quadratic function Vi(oy) = o7y, whose time-derivative

3 2
satisfies:
1% (o1) = del = —Ufal + aipKljSu (19)

From Assumption 2 and considering Young’s inequality, we
can obtain the following relation:

oI K 1Jgu < Ak, [|o1]|*/4 + Blu? (20)
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where Mk, denotes the maximum eigenvalue of K. Substi-
tution of (20) into (19) yields:

Vi(o1) < = (1= M, /4) o[+ Bllall” @D
With this method, the DJM is adaptively computed as:
i, = (s i, K;lw) ut 22)
@ = —0y — & — o3 * tanh (|[ul*/x) Bllul)
where the variable f is updated with the adaptive rule:
8 = tanh (|[ull*/x) llall* = 8 23)

for x and v as positive constants.

Proposition 1. Consider the dynamic system (3) in closed-
loop with the adaptive controller (18), (22), (23). Given de-
sired shape vector sg, there exists an appropriate set of control
parameters that ensure that: (1) all signals in the closed-
loop system remain uniformly ultimately bounded (UUB), and
(2) the deformation error ei asymptotically converges to a
compact set around zero.

Proof: Consider the energy-like function
Va(o1,02,B) = Vi(o1) + 305 00 + 3 5?

for B =B - B Considering the Young’s inequality, BB <
(8% — /3%)/2 and invoking (21)—(24), we can show that the
time derivative of V5 satisfies

A -
— (1= 2 ) ol ol - 357+

< —aVa(o1,02,0) +b (25)

where @ = min ((2 — Ak, /2),2,7), b= Bdx +~v5%/2>0.
By selecting a matrix K; that ensures that a > 0, the state
signals o1, 09 and [ are endowed with asymptotic stability
and remain UUB [30]. This implies that the shape error e;
asymptotically converge to a compact set around zero, and
ensures that the Jacobian estimation error J; is bounded [31].

|

(24)

‘/2(0—17 0275)

IN

B. Finite-Time Sliding Mode Control

Many practical applications demand a tight timing perfor-
mance, which cannot be accomplished by simply increasing
the control gain; FTSMC is designed to addressed these issues.
The non-singular terminal sliding surface [32] is given as:

o1 = €1 + ag sight (é1) + f1sig? (eq1) (26)

09 = €9 + Qo Sigp2 (ég) + B Sigq2 (ez)
where p1 € (1,2), ¢1 > p1, p2 € (1,2), g2 > p> and

a1, 09, 01,P2 > 0 are all positive constants. Invoking (15)
and Lemma 1, the time derivative of o; is given by:

&1 = JoutJou—sgtaipi e e +Biqile| " e (27)

which we use to design the following velocity control input:

. p1—1..
wedp (Tomlelt e o) ) gy

—Brqiler |(“_1é1 + 84
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With the above controller, we obtain a new expression for V1

Vi(o1) =0l = —e10l sgn(oy) + o Jou  (29)
where by considering the Young’s inequality:
of Jou < [lon|*/4+ Bllul’ (30)

we can show (after some algebraic operations) that the fol-
lowing relation is satisfied:

Vi(o1) < =t ol + llonll*/4 + Blul®
Finally, the adaptive rule for the DIM is given as:

35:( )u+
€2

- 1
= = ot (tanh (Jul?/x) Bl + lonl?) G2

Proposition 2. Consider the dynamic system (3) in closed-
loop with the adaptive controller given by (28), (32), (23). For
this system, all state signals are semi-global practical finite
time stable (SGPFS) [33], and the shape error e converges
to a compact set within a finite time without any singularities
during the task.

€29

é—jsu—i—egsgn(@) +w
+aapa|ea]”* T éy + Bagolea|™ !

Proof: Consider the energy-like function (24) computed
with the sliding surface (26). By using the folowing square
completion property:

—7B%/2 < /8 —4|B|/2 (33)

along with (31), we can show that the time derivative of V5
satisfies the following relations:

Vo < —e1 ||ou|| — 2 [|oz|| — vB%/2 + (BSx +~B%/2)
< —aV} +b (34)

where a = min (2¢1,2¢2,7), b= Bdx +v8%/2+~/8 > 0.
By selecting appropriate parameters that ensure a > 0, then
V5 converges to a compact set {Va|Vo < Q2 time t > T}
within the convergence time T calculated by [33]

1
T,=2 (V) (X(0)-9), 2=ty

where X (0) = [07 (0),0% (0),5(0)]T € R**! and v €
[0,1]. Then, X remains in the compact set defined by €2,
{X | IX| <29, t > T,}, which means that oy, 05 and 6
are SGPFS. This implies that the shape error e; and estimation
error e converge to a compact set around zero within finite
time [32].

In the traditional terminal sliding mode controller [34],
there exists |e;|™,7 = 1,2 and w < 0. Thus, u cannot be
guaranteed to be bounded when |e;| is near the origin, namely,
numerical singularity. For the proposed velocity command
(28), it does not contain any negative fractional power since

€ (1,2),q; > p;,i = 1,2; thus it is singularity-free. The
above results validate that the CRDO can be manipulated
into the target configuration within finite time along NFTSM
without any singularity and all state signals as SGPFS. ]

The workflow of the proposed framework is given in Al-
gorithm 2. Fig. 3 gives the block diagram of the proposed
dual-arm robot manipulation framework.

(35)

Remark 1. In practice, the function sgn can be replaced with
the function tanh to reduce the chattering effects.

Algorithm 2 Workflow of the proposed framework
Require: Threshold; Max; Sw: default=1;

1: Give a target shape feature s, calculated by c*

2: Conduct small deformations around the startmg conﬁgu—

ration to initialize J,(0) and start the manipulation;

3: k=0, 5(0) «+ 0.001

4: while ||e1]| > Threshold and k < Mazx do

5 Record the current position r and velocity u;
6: Record the current contour ¢ of the object;
7
8
9

Calculate the current shape feature s < (5) -
Calculate error signals e; and ey < (14);
: Calculate 0, (16) <— Sw =1 or (26) < Sw = 2;
10 Update the adaptive term [ <+ (23);
11: Update u, (18) «— Sw =1 or (28) <~ Sw = 2;
12: Update Jg, (22) < Sw =1 or (32) + Sw = 2;
13: Dual-arm robot moves using the updated u;
14: k=k+1;
15: end while

(13);

Dual-robot Manipulation

Fixed Camera

Lsmc<-(22) || u(t) = () l(‘:(t)
FIsMC<-(32) || [Shape feature « s(t)]
Jacobian 4 4
L—~J
s(t)

Fig. 3. The block diagram of the proposed manipulation framework.

V. NUMERICAL SIMULATIONS

In this section, we simulate the motion of a planar dual-
arm robot that manipulates an elastic cable. The velocity
input is constructed as u = [uf,ul]” € RS, where the
coordinates of u! = [u;1, w2, ;3] represent the linear and
angular velocities along the x, y and z axes, respectively. The
maximum speed for linear motions is set to |u;;| < 0.06
m/s (for j = 1,2), and for angular motions to |u;3| < 0.2
rad/s. The simulation environment is programmed in Python;
The code is available at https://github.com/q546163199/shape_
deformation/tree/master/python/package/shape_simulator.

A. Validation of the Contour Moments Extraction

In this section, the dual-arm robot manipulates the elastic
cable along a continuous trajectory that generates multiples
object shapes, see Fig. 4. The contour moments that are

LUV L1572

(c) (d) (e)

Flg. 4. Various shapes of the elastic cable among different conditions.
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Fig. 5. Contour moments extraction (5)-(13) from 100 sample shapes.

t-SNE Data reduction to display

Fig. 6. Data distribution t-SNE of the contour moments. Each point
represents each shape. Different color indicates the different shape to visualize
the shape changes.

extracted from these robot-object motions are depicted in Fig.
5, which shows that as shape changes, the features’ profiles
also change. We collect a 100 (ten-dimensional) data points
s from this motion test and use t-SNE [35] to visualize its
evolution with a color gradient (with blue as initial and red
as final), as shown in Fig. 6. These results demonstrate that
the proposed shape features provide a smooth (continuous)
representation for the object’s deformable configuration.

Feature Estimation Error 77
—RLS —- LKF —LSMC --FTSMC||

x10"

Iteration steps

Fig. 7. Profiles of the criteria 7% and ||ez2|| with dual-arm robot executing a
given trajectory r. It gives the estimation effect of Js among RLS [36], LKF
[37], LSMC (22) and FTSMC (32), respectively.
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B. Estimation of the DJIM

In this section, we command the robot to execute slow
and smooth trajectories ¥ (¢) with the proposed LSMC and
FTSMC controllers. The purpose of this test is to compare the
accuracy of the Jacobian estimation J, obtained with these
methods, and that obtained with traditional Recursive Least
Square (RLS) [36] and Linear Kalman Filter (LKF) [37].
For that, we initialize J,(0) with a random matrix and then
perform small local motions and run the estimator to obtain
an “good-enough” matrix J. To quantify the accuracy of such
estimation, we introduce the following metric:

T = s —§ (36)

where § is the estimated shape feature that is updated as
follows:

s§=J,-u, §(0)=s(0) (37)

where js is estimated by RLS, LKF, LSMC and FTSMC.
§(0) and s(0) are the initial values of § and s, respectively.
Fig. 7 illustrates the evolution of 737 and ||ez|| for the motion
r executed by the robot in the previous test. It can be seen
that FTSMC provides the best approximation amongst the
considered algorithms (viz. RLS, LKF, LSMC). These results
corroborate that the proposed FTSMC can accurately predict
the shape features s and its differential change s, enabling to
guide the robot with the estimated matrix J.

(a) RLS (b) LKF (c) LSMC (d) FTSMC

Fig. 8. Profiles of the shape deformation trajectories among four methods,
namely, RLS [36] [10], LKF [37] [10], LSMC (18)(22) and FTSMC (28)(32).
The red represents the initial contour, the blue represents transitional contours
and the black represents the target contour c* represented by sg. The
deformation trajectories display every two frames.
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Fig. 9. Profiles of contour deformation error ||e1|| and velocity command u
among four methods, namely, RLS [36] [10], LKF [37] [10], LSMC (18)(22)
and FTSMC (28)(32).

C. Manipulation of an Elastic Cable

In this section we validate the performance of the proposed
shape controller by commanding the robot to deform a linear
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Fig. 10.  Performance comparison of four indices among four methods,
namely, RLS [36] [10], LKF [37] [10], LSMC (18)(22) and FTSMC (28)(32).

deformable object (cable) into a desired contour ¢* (which is
transformed into a desired feature vector s;). We compare
the error minimization performance of the FTSMC/LSMC
methods with that of a classical visual servoing controller (i.e.
4 la Chaumette) with the DJM adaptively estimated with RLS
[36] and LKF [37].

Additionally to the shape error ||e1]|, we use the following
four indices to analyze the performance of the system:

1) Convergence step T}, indicates the total deformation
time consumed by the system.

2) Decay time t; indicates the time required to decrease
from ||e;|| to 10% of its initial value ||e;(0)]|.

3) Settling time ¢, indicates the time required to decrease
from 10% of ||e1(0)|| to 0.01.

4) Integrated absolute error (IAE) indicates the cumulative
error and shows the energy consumption of the system

t
IAE = / e dt (38)

0

Fig. 8 shows the simulated deformation trajectories with the

four methods. From the analysis of the FTSMC in (35), we can
see that the parameters €1, €2, 7y, x determine the minimization
performance o; — 0. The parameter €; represents a control
gain with similar function to K; in (16). As there exists
an adjustable power term in (28), the accuracy and speed
of the system can be adjusted without increasing ;. This
valuable property is lacking in the other three methods, as they
must increase the “proportional-like” control gain to achieve
a comparable convergence rate (which in turn may generate a
large input velocity u). Fig. 9 shows that FTSMC provides the
fastest error minimization and LSMC the second-best, while
RLS and LKF give a similar performance. A summary of
the performance comparison amongst these control methods
is shown in Fig. 10.

VI. EXPERIMENTS
A. Setup

To further validate the effectiveness of our proposed frame-
work, we conducted an experimental study with a dual-arm
robotic platform (composed of two URS robots) manipulating
several types of CRDO: Elastic cable, sponge, plastic folder,
non-homogeneous (NH) beam, articulated wallet, and a rigid
box, see Fig. 11. A Logitech C270 camera is used to capture

(d) NH beam (f) Rigid box

Fig. 11.

(e) Articulated wallet

Dual-arm URS experiment platform manipulating CRDO.

A

(a) ROI selection (b) Binary (c) Extraction (d) Fixed-sampled

(e) ROI selection

(f) HSV

Fig. 12. Image processing for generating a fixed-sampled closed contour of
various objects.

(g) Extraction (h) Fixed-sampled

the shape of the objects; All image processing algorithms are
implemented in a Linux PC at 30 FPS with OpenCV. The ex-
perimental video can be downloaded from: https://github.com/
q546163199/experiment_video/tree/master/paper3/video.mp4

B. Image Processing

The contour extraction process (depicted in Fig. 12) is as
follows: The red areas near the grippers are first extracted,
and their centroids computed and marked with green points.
The object’s region of interest (ROI) is defined by these
points. For the manipulated black objects, their binary image
is extracted from the ROI by using OpenCV’s morphological
algorithms for denoising. For the manipulated yellow objects,
we transform their image into HSV and then conduct mask
processing to obtain the binary image. The contour of the
objects (either black or yellow) is then simply extracted by
using OpenCV’s findcontour function. Finally, a fixed-step (set
to N = 300) algorithm [10] is used to construct the contour
¢ with a constant number of points c;.

C. Evaluation of Contour Moments and DIM

The robotic platform is commanded to continuously deform
three CRDO into various shapes, see Fig. 13 (such shaping
actions are demonstrated in the accompanying multimedia
file). The profiles of the feature coordinates s; obtained from
these robot motions are depicted in Fig. 14. The graphs show


https://github.com/q546163199/experiment_video/tree/master/paper3/video.mp4
https://github.com/q546163199/experiment_video/tree/master/paper3/video.mp4

(a) Linear sponge (b) NH beam (c) Rigid box

(e) NH beam

(d) Linear sponge
Fig. 13.

(f) Rigid box

Different shapes of various objects manipulated by dual-arm URS.
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Fig. 14. Contour moments extraction (5) - (13) of 900 shapes among sponge,
beam and box. Each group has 300 shapes, separately.

that the contour moments can smoothly represent the infinite-
dimensional object’s shape, results that are consistent with its
simulation counterpart.

The accuracy of the computed matrix J is also validated by
commanding the robot to move along an arbitrary trajectory
with both grippers manipulating the elastic cable. Fig. 15
shows a performance comparison of the metrics 73 and ||ez]|.
These results also confirm that FTSMC provides a superior
performance in the estimation of the unknown Jacobian matrix.

«101 Feature Estimation Error T;

|—RLS -- LKF —LSMC =--FTSMC|

" [ —RLS -- LKF —LSMC —-FTSMC(]
: —~ T A 1.
' na

0 10 20 30 40 50 60 70 80
Iteration steps

Fig. 15. Profiles of the criteria T and ||ez|| with dual-arm URS executing a
given trajectory r. It gives the estimation effect of Js among RLS [36], LKF
[37], LSMC (22) and FTSMC (32), respectively.
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D. Shape Servoing with CRDO

We conducted an experimental study where the robot manip-
ulates six objects (with varying mechanical properties): Elastic
cable, linear sponge, plastic folder, non-homogeneous beam,
articulated wallet, rigid box. We denote the experiments with
these objects as Expl...Exp6, respectively. Throughout this
section, we shall compare the performance of the proposed
FTSMC with LSMC, LKF and RLS (a classical visual servo-
ing controller is used with the last two).

Fig. 16 illustrates the active shaping motions (represented
by the moving green contours) of the objects towards the
desired target configuration (represented by the red contour).
This figure qualitatively depicts the contour trajectories of the
six objects (each in a different row) with the four controllers
(each in a different column). Fig. 17 quantitatively depicts
the time evolution of the shape error ||e1|| and the respective
driving control inputs u. From these temporal profiles, we
can see that the proposed FTSMC provides the best control
performance compared to the other methods.

A summary of the performance metrics for the conducted
manipulation experiments is depicted in Fig. 18. This figure
quantitatively shows that the proposed control method achieves
the best relative to the time instance ¢4 (which means that the
elastic cable can be coarsely deformed into the target configu-
ration), the instance ¢4 (a property introduced by the terminal
attractor sig(-)), and the TAE index (which demonstrates the
moderate consumption of energy).

VII. CONCLUSIONS

In this paper, we present a new visual servoing framework
to control the shape of composite rigid-deformable objects
with dual-arm robots. To characterize the objects’ infinite-
dimensional shape, a compact feature vector is constructed
with contour moments from the observed 2D image of the
object. A new finite-time sliding mode controller is proposed
to automatically deform the object into a desired shape and
simultaneously estimate the deformation Jacobian matrix; The
stability of this method is rigorously analyzed. To validate
the performance of our new method, we report a detailed ex-
perimental study with a robotic system manipulating multiple
objects.

The proposed method has some limitations. First, this con-
troller cannot be used for purely plastic objects, such as certain
food materials or clay. Second, although FTSMC controller
provides the best performance, due to the existence of many
control parameters, sometimes it is difficult to adjust them to
obtain a satisfactory performance. The hard saturation adopted
in this paper is used to limit the control input, however, we
do not consider its impact on the system’s stability. For future
work, our team is currently extending the current method
such as performing 3D manipulation tasks. Also, we are
incorporating shape planning capabilities into the framework
so as to conduct complex multi-action shaping tasks (e.g.
packing non-rigid objects).
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