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LaSeSOM: A Latent Representation Framework for
Semantic Soft Object Manipulation
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Abstract—Soft object manipulation has recently gained popu-
larity within the robotics community due to its potential appli-
cations in many economically important areas. Although great
progress has been recently achieved in these types of tasks, most
state-of-the-art methods are case-specific; They can only be used
to perform a single deformation task (e.g. bending), as their shape
representation algorithms typically rely on ‘“hard-coded” fea-
tures. In this paper, we present LaSeSOM, a new feedback latent
representation framework for semantic soft object manipulation.
Our new method introduces internal latent representation layers
between low-level geometric feature extraction and high-level
semantic shape analysis; This allows the identification of each
compressed semantic function and the formation of a valid shape
classifier from different feature extraction levels. The proposed
latent framework makes soft object representation more generic
(independent from the object’s geometry and its mechanical
properties) and scalable (it can work with 1D/2D/3D tasks).
Its high-level semantic layer enables to perform (quasi) shape
planning tasks with soft objects, a valuable and underexplored
capability in many soft manipulation tasks. To validate this
new methodology, we report a detailed experimental study with
robotic manipulators.

Index Terms—Robot manipulators, soft objects, shape control,
semantic deformation, feature representation.

I. INTRODUCTION

ECENT studies have shown that the manipulation of

soft objects is crucial and indispensable to achieve high
autonomy in robots [1]. For instance, many applications need
to actively shape food materials [2], handle and fold fabrics
[3]], assemble flexible automotive parts [4f], manipulate cables
or sutures [5]], palpate organs and tissues [[6] (see [7] for a com-
prehensive review). Although great progress has been recently
achieved, the feedback manipulation of soft objects is still a
challenging research question. The implementation of these
types of advanced manipulation capabilities is complicated by
various issues. Amongst the most important is the difficulty
in characterizing the feedback shape of a soft object. Our aim
in this work is to develop new data-driven methods that can
quantitatively describe deformable shapes.

Hirai [8]] first demonstrated how feedback controls could
deform a soft object into a desired 2D shape. This early work
is a clear example of a shape representation based on points
(simple but cannot generalize). Other classical methods are
based on geometric features e.g. angles, curvatures, catenaries
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[91-[12]; Its disadvantage is that they are case-specific, thus,
can only be used to perform a single shaping action (hence
inapplicable to unstructured scenarios). Some works have
addressed this issue by developing generic representations
that only require sensory data. For example, [13]], [[14], and
[15]] characterize shapes using Fourier series and feature
histograms; These methods, however, create very large feature
vectors, which may not be the most efficient feedback metric.
A more effective solution is to automatically compute generic
feedback features (e.g. as in direct visual servoing [16], [17])
and combine them with dimension reduction techniques, as in
e.g. [18], [19].

Data-driven based shape analyses [20], [21] have gained
in popularity as it offers a useful alternative to model-
based approaches. An increasing amount of research have
focus on different-level segmentation and shape classifications
(see [22f, [23]], and [24]]). However, these methods purely
depend on the designed end-to-end pipeline which ignores
the semantic meaning of internal features and thus failing
to interpret the entire analytical process. Therefore, latest
applications started to examine attribute-based approaches,
such as binary attributes [25]], relative attributes [26], and
semantic image color palette editing [27]]. Several works [28]],
[29]] further combine shape analysis and semantic attributes
for a in-depth deformation analysis. Our approach has the
same purpose, with an emphasis on 3D shape deformation,
to achieve a comprehensive semantic shape analysis on 3D
object deformation.

Latent space approaches have recently achieved many suc-
cessful results in text mining and image analysis [30], due to
its capability to encode high-dimensional data into a meaning-
ful internal representation. By using concise low-dimensional
latent variables and highly flexible generators, a latent space
allows us to generate new data samples on data space. In this
manner, a deformation planning problem of soft objects can
be solved in a novel way by constructing a feasible sequence
of deformable shapes in latent space. However, many works
[31] have adopted a linear interpolation in remapping the
latent variables back to data space, which could cause serious
distortions on the generated samples for a shape planning
scenario. For example, consider a generator g and a latent
variable z with two infinitesimal shifts §; and Js, then the
distance with Taylor’s expansion [32]] is formulated by:

lg (20 + 1) = g (70 + 82)|I” = (A1) (Tgdao ) (Aaz) (1)

forJ,, = g—-‘z’
z

and A1y = §; —0o, which indicates that the
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Fig. 1.

Conceptual representation of the proposed framework — LaSeSOM that fully describes and represents the soft objects for bimanual manipulation

tasks from four layers, namely, the low-level geometric feature layer, compressed learnt feature layer, semantic features and shape classes layer, and semantic

shape knowledge layer.

normal distance in Z space changes locally as it is determined
by the local Jacobian. Therefore, the generated data space
should not be regarded as a linear Euclidean space, but rather
as a curved surface, a manifold. Consequently, seeking the
shortest curve along the manifold is a more reasonable way to
compute the interpolation and generate undistorted samples.
As a feasible solution to these problems, in this paper we
present a general data-driven representation framework for
semantic soft object manipulation that is composed of three
layers: A low-level soft object geometric shape processing, a
mid-level data-driven representation learning, and a high-level
semantic shape analysis. Such multilayer semantic framework
provides extra flexibility and interpretability in the design of
complicated soft object manipulation systems.
The paper’s main contributions are summarized as follows:
o An effective representation framework for soft object
analysis during manipulation tasks.
« A novel semantic analysis approach for soft object ma-
nipulation tasks.
« A solution for shape planning with a geodesic path-based
interpolation algorithm in the latent space.
The rest of this paper is organized as follows. Section
describes the proposed representation framework. Section

presents the representation models. Section [[V] shows the
experimental results. Section [V] gives final conclusions.

II. FRAMEWORK OVERVIEW

Unlike rigid objects, soft objects have infinite degree of
freedoms and it is impractical to describe the shape without
complex calculation and rich priori information. However,
a semantic data-driven learning process exhibits a possibility
of constructing valid and compact features in a latent space
to represent soft objects without prior: information. We
introduce a three-level representation framework partitioned
by a four-layer information flow as follows:

Low-Level Processing: This level provides feature extraction
as the first step in soft object representation. Various descriptor
and 3D representation algorithms have been proposed to date
[33] [34] [35], and low-level features (contour descriptor,
surface normal, Convld, etc.) can be extracted easily from
3D soft object data without compression. Note that this is no
unified method for extracting low-level features, please choose
appropriate one based on various purposes and different raw
data formats. To show the generalization ability of LaSeSOM,
two typical data (markers and point clouds) are introduced
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to describe the deforming shapes. Nevertheless, lacks of rep-
resentation efficiency and hierarchical structure preclude us
from using raw low-level features of soft objects to its fullest
extent. Consequently, We should reduce the dimensionality of
the low-level extracted shape features.

Mid-Level Representation: As shown in Fig. [T two mod-
ularized data-driven learning phases are applied to produce a
set of compressed and semantic representations. In Phase I,
we employ both linear and non-linear dimensionality reduc-
tion modules to comparatively compress low-level and high-
dimensional features. Linear transformation models, such as
principal component analysis (PCA), try to provide the prin-
cipal components for expressing original features on its sig-
nificant basis. As for the non-linear transformation model, the
auto-encoder network is used to construct a bottleneck layer
to achieve dimensionality reduction through an unsupervised
learning process. With different dimensionality transformation
techniques, the entire phase I outputs concise and internal
representations for soft objects in a latent space. In Phase II,
we design a semantic feature analysis algorithm to detect the
function of each reduced feature. Besides, building a classifier
in a latent space allows us to efficiently assign each shape into
one of the predefined soft object shape categories for different
deformable objects. During this process, k-nearest neighbor
(kNN) algorithm is selected as the classifier in the generated
latent shape space.

High-Level Analysis: Soft object deformation knowledge
plays an important role in manipulation tasks. This knowledge
comprises two parts, namely, semantic shape relations and
shape deformation planning. The morphing relations between
different shapes can be discovered by observing the connectiv-
ity of a deformation trace in latent shape space. In addition, the
application of a geodesic path-based interpolation technique
in the latent shape space shows a valid method for a shape
planning in externally observed data manifold for soft object
manipulations. More importantly, the generated shapes of soft
objects lies on the input data manifold, which means that the
planed shapes are not only equally and softly changed but also
free of distortions.

III. METHODS

In this section, we first introduce basic techniques (shape
features, dimensionality transformations, etc.) used in different
layers, and then illustrate the connections between the latent
space and original data space. More importantly, with this
latent space, we design several semantic analysis algorithms
to help describe the soft object deformation process. Lastly, a
geodesic path generation algorithm with Riemannian metrics
is proposed to solve the deformation planning problem.

A. Shape Feature

In order to apply this framework into various soft object
manipulation tasks, two typical data formats are selected to
depict the soft object shape. One is the ordered marker point
data in the format of a set of ordered 3D points that is widely
used in the motion tracking system, and the other is a popular
point cloud data to represent a geometric shape surface via a

set of large quantities of unordered 3D points in a Euclidean
space. Formally, m soft object shapes compose of the entire
deformation process, and each soft object shape S; can be
denoted as an ordered marker point set M, represented by
n marker points. Consequently, the entire deformation can
represented as a shape matrix X as below:

$<11> yﬁl) Z§1> OO R Ol
X = : : : : : :
2™ ) IO RO

where the coordinates of the markers have been fatten so
each row with n markers has 3n features and the number
of total shapes during this deformation is denoted by m.
To approximate the contour composed of 3D marker points,
Fourier approximation [36] is selected since this shape descrip-
tor can depict the shape with arbitrary precision. However, this
descriptor is usually used for 2D shape modeling problems.
Consequently, in the low-level representation, we expand this
descriptor into a 3D configuration as below:

z(l) = ao + Z(ancos(wnl) + brsin(wnl))
y(l) =co + Z(cncos(wnl) + dpsin(wnl)) 2)
z(l) =eo + Z(encos(wnl) + fnsin(wnl))

where ag, cg, and ey are the bias components of the Fourier
descriptor with a frequency of 0, and [/ is a same length
that periodically circles along the entire length of soft object
denoted by L, and the coefficients of the n-th harmonic are
represented by a,, by, ¢y, dy, €, and f,, which can be solved
with expressions of [36] to constitute the description of the
shape.

A deformable shape .S; can also be represented as a point
cloud data P;. With farthest point sampling algorithm used
in PointNet++ [37], the raw point cloud can be sampled into
”P; with a fixed input size 3N, where N is the resolution of
the resampled point cloud, which means is the total number
of points in this point cloud. Thus, given a point cloud P,
the input shape matrix can be represented as X;,, € RV*3,
The feature extraction process follows the design principle of
PointNet [38]]: increasing the features with convolutional 1D
layers (By doing so, each point in P’ can be encoded inde-
pendently); After the convolutions is connected a “symmetric”
and permutation-invariant function (e.g. a max pooling) to
generate a joint feature representation in a size of 1 x N.
In this paper, we select the Chamfer(pseudo)-distance (CD)
as the permutation-invariant metric for comparing unordered
point sets. Given two point cloud set P; and P;, this metric
measures the squared distance between corresponding nearest
neighbors in different sets:

dep (P, Py) = ) min [o—y|5+ > min |z —y|3 G)
CEGPiy J yeP,; i



B. Linear Transformation: PCA

The dimensionality reduction technique is applied in the
layer 1 to discover optimal compressed features for a mid-level
representation. Principal components analysis (PCA) [39] aims
to provide a sequence of optimal linear transformations for
low-level and high-dimensional raw features. To achieve this
goal, PCA computes new variables called principal compo-
nents which are obtained as linear combinations of the original
variables. Formally, considering a shape feature matrix X with
m shapes and n feature dimensions, the goal of PCA is to find
a transformation P to linearly convert X to Y and reduce the
original n feature dimensions into k dimensions (kK << n),
which can be denoted by ¥ = PX. By re-expressing Y
with regards to P and X, the covariance matrix X, can be
obtained as below:

1
= 7YYT — _pPSP” 4
Yo n—1 n—1 “)

where § = X X7 is a symmetric matrix and can be diagonal-
izable by a matrix which is orthonormal of its eigenvectors,
such that,

b))

S = EDET (5)

where D is a matrix that is diagonal contains the eigenvalues
of S, F is a matrix that is orthonormal whose columns are
orthogonal eigenvectors of S. By this conversion, rows of P
become the eigenvectors of S, that is E7T and 3, becomes:

s, = %ET(EDET)E (6)

Finally, diagonalizing the covariance matrix X, is achieved
and the principal components are the eigenvectors of S. One
efficient solution for the PCA problem is known as the singular
value decomposition (SVD) [40].

The following semantic analysis part of LaSeSOM needs
to identify the semantic meaning for compressed features.
For this reason, the inverse samples reconstructed from the
compressed features are needed, which can solved by:

Xrec:Xrec+l1/:P71Y+/.lz 7

Besides, to select an appropriate number of components,
the explained variance, by calculating the fraction between
variance explained by partial principal components and the
total variance, is defined as:
231 Vi

i ®)
i1 Vi

Vexp =

C. Nonlinear Transformation: Auto-Encoder

In mid-level representation, the auto-encoder(AE) [41] is
used to compress shape features with non-linear transforma-
tions. As shown in Fig. [2] AE is a neural network constituted
by three parts, namely, a hidden layer representing the input
data known as the code or bottleneck layer, an encoder that
maps the input into the code, and a decoder to map the code
to a reconstruction of the original input.

Formally, an AE takes an n-dimensional soft object shape
vector & as its input, which is mapped to its k-dimensional

z Decoder — T

r 3

Error

v

Fig. 2. Conceptual representation of the Auto-Encoder network structure.

bottleneck layer y through the deterministic equation y =
fo(x) = s(Wx + b), which in turn is parameterized by 6 =
{W,b}. W is a k xn weight matrix, b is a Vector of bias, and
s is a sigmoid activation function, s(z) = == +e —. The hidden
representation is then traced back to a reconstruction z with
n dimensions, which is sometimes referred to as the latent
representation, where z = gg/(y) = s (W'y + b'), with 6’ =
{W',b’}. The parameters 6, 6’ for the model are designed to
minimize the average error of reconstruction, which is defined

w (=) o

where the loss function L needs to be changed depending on
the property of input features. For example, if the input feature
is the ordered features extracted by Fourier descriptor, then
L could be normal mean square error (MSE). However, for
the unordered point cloud features, the permutation-invariant
metric defined in Eq. [3]is needed to calculate a reconstruction
loss. Besides, AE probably learns the identity function and
hardly extracts valid features from the input. Consequently, in
most cases, a regularized empirical risk function on a data set
with D,, shape samples defined as follows is required:

A (fD <ZL(fe( ),z<”)>+m(9) (10)

where all parameters more or less have been penalized by (2,
and A > 0 regulates the regularization degree. The AE training
algorithm with stochastic gradient descent is explained in [41]].

0*,6" =argmin— ZL (

6,0’

D. k-Nearest Neighbor

Based on the output of Phase I in mid-level representation,
a kNN [42] classifier is introduced to distinguish different
shapes. The reason for choosing this classifier is because the
similar shapes are relatively close in raw input data space
during the deformation. Additionally, by extending kNN with
geodesic path distance, the pattern could keep unchanged in
the latent space generated by AE, which makes KNN more
flexible to work under different spaces. Dy, is defined as the
k-nearest shape neighbors of query shape «!? in the required

| Dy ={(a, 1 («)),.... (=", 1 (1))}

where Dy, can be generated with the Euclidean distance mea-
surement when f(x) represents a mapping to target variable
in observation space, while it can also be a set with the
Riemannian distance measurement if f(x) is a continuous

(11)
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transform function to a latent space. The kNN hypothesis
remains consistent and is formulated as follows:

(@) e o 370 (7 (a)
=1

,,,,,

12)

where § denotes the Kronecker Delta function. Before using
the kNN, the number of nearest neighbors should be determi-
nated. An effective strategy is to select the k& with the lowest
mean square error (MSE) in n-fold cross validation, which
can be defined as:

CV(n) = % > MSE; (13)
=1

E. Latent Shape Space

With dimensionality transformation techniques, we embed
the low-level features of the collected shapes in a low-
dimensional latent shape space. This subsection will illustrate
the connection between the latent space and the derived
manifold, which serves the foundation to develop a algorithm
for geodesic path generation with Riemannian metrics. In deep
generative models (i.e. AEs [43]], VAEs [44])), as shown in Fig.
[l a manifold M is formed through a generator g mapping
linear coordinates of variables in latent space Z (Z C R4)
into the curvilinear coordinates of originally high-dimensional
data space X (X C RP, normally, d < D). In fact, g is
a composition function of numerous layers, which can be
formulated as ¢ = g 0 ¢g® o ... 0 g with superscripts
to denote the index of layer. For each layer, ¢(") is an affine
transformation. Combined with a nonlinear activation function
¢, it can be represented as below:

PO (yu)) — ¢ (W]gnym + b(z))
U]

where g,” denotes the kth component of the output and ngl)
represents kth row of the weight matrix. The image of g could
be regarded as a smooth (i.e., C°°), d-dimensional immersed
manifold on condition that the Jacobian Jy(z) of g at every
point z € Z has rank d. According to the chain rules of neural
nets, the condition would be satisfied if we choose a smooth
and monotonic activation function, ¢, and weight matrix has
full column rank. The condition of activation function can be
ensured by choosing a correct activation function in the phrase
of network construction. Therefore, we can make sure that
M is an immersed manifold, which means that it is locally
differentiable but globally intersected d-dimensional Euclidean
space.

(14)

Z X

Fig. 3. Conceptual representation of a generator as a mapping from low-
dimensional latent space into a manifold in input data space.

Mathematically, for every point z in the latent space Z,
Jg4(z), the Jacobian matrix of g, maps T, Z, the tangent space

of Z at z, to Ty.)M, the tangent space of M at g(z). In
AE, J,(z) is a d x D partial derivative matrix calculated
by backpropagation algorithm. Since a Riemannian metric
offers the format of an inner product structure between tangent
vectors in their tangent spaces 7, M, so the induced metric
would be used from the ambient data space X. Consider two
vectors u,v € T, M as living in a linear subspace of X,
the Euclidean dot product of = could be used to compute the
Riemannian metric (u,v). Intuitively, the metric denotes the
curvature of a Riemannian manifold and measures the extent to
which deviates from being Euclidean. See standard definitions
of Riemannian geometry for a detailed mathematical explain-
ing of curvature(e.g. []). Note that a manifold M with zero
curvature doesn’t mean that it it linear. For example, bending
a sheet of paper with a straight line make the surface highly
nonlinear but zero curvature, because the straight line changes
into a geodesic curve with the same arc length.

F. Geodesic Path on Manifolds

Through the mapping g, all the concepts (tangent vectors,
tangent spaces, curves, etc.) defined in the latent space Z have
a unique counterpart on the manifold M. For each point z €
Z, the Riemannian metric is defined as below:

G(2) = Jy(2)T Ty(2) (15)

Therefore, the inner product of two tangent vectors u,v € 7,7
is (u,v) = uTG(2)v. Consider a smooth curve in the latent
space v : [a,b] — Z, then it has length ff |ve |l d¢, where
~¢ = dv¢/dt denotes the velocity of the curve. The length of
this curve L lying on the manifold (go~(t) € M) is computed
as:

b b
Llgtn) = [ NaGolde= [ 13,504 a6

where J,, = %‘ and the last step follows from Taylor’s

Theorem, which 71?1A1Y)tlies the length of a curve ~; along the
surface can be computed directly in the latent space using
below defined norm:

13540 = /4T (373,) 5 = /3 My

Here, M, = J IJ ~ and it is a symmetric and positive definite
matrix, that gives rise to the definition of a Riemannian metric
for each point z in the latent space Z. The arc length with
metric M, can be re-expressed as:

b
L(y) = / AT ML At
a

To obtain a geodesic curve, the curve length L(7) is locally
minimized through an energy functional E(vy) defined as:

b
E0) =5 [ 307Gyt

In Riemannian geometry, taking a variation of the geodesic
energy function can lead to the Euler-Lagrange equation
calculated as:

a7)

(18)

(19)

Pt
dt2 B dt dt

(20)



where Fg 5 is the Christoffel symbol of the metric G, which
is defined as:

. = }Guu <8Gv/3 an(x
aBb 9 oo oyP
where G# is the inverse of G,,. Typically, a geodesic path
can be given by calculating a numerical integration of the
ordinary differential equation defined in (20). But calculation
of the Christoffel symbols is considerably expensive, because
this process involves not only second derivatives of the g and
but also an inverse of G. However, in practice, instead of
getting the entire geodesic path, we only need to calculate
out few discrete points along on the geodesic path. Therefore,
directly starting from discrete geodesic energy (I9) can avoid
the abovementioned expensive calculations.

Formally, consider a discretized curve denoted by a series of
coordinates zg, z1, ..., 2N € Z, it is approximating a continu-
ous curve, 7 : [0,1] — Z. Then with T time steps, a sequence
of discrete time intervals of 6t = 1/N is generated, which
corresponds to a discretized curve on the manifold M as g(z;).
With a forward finite small shift, the velocity of the curve at
g(z;) can be approximated as v; = (g (2zi+1) — g (z)) /ot.
Similarly, the energy of this curve can be given:

Bk 21

B a(;aﬂ)

N
Bo=3> oG —gGIE @)
i=0
Fixing the first and last points, 2y and zy, as the beginning and
ending points of our geodesic path, minimizing this discrete
geodesic energy function would result in a approximated
geodesic path. To obtain this finalized curve, we will perform
a gradient descent in the rest points, 21,...,2y_1, along this
curve. The gradient at z; is computed as:

VeB = 2T (20) (9 (1) — 29 (20) £ 9 (511))

Therefore, by implementing a gradient descent algorithm, the
calculating process of a discretized geodesic path can avoid
the expensive calculations of Christoffel symbols. The detailed
procedures is illustrated in Algorithm [I]

(23)

Algorithm 1: Geodesic Path Generation

Input: Two coordinates, zg, 2y € Z;
learning rate o € R
Output: Discrete geodesic path, zg, z1,...,28y € Z
1 Initialize z; as linear interpolation between zg and zn
while 3, [|V.. E||” > € do
2 | for ie{l,...N—1} do
3 L Compute gradient V. E using

4 zi <z —aV, E

5 return zg, 21,...,2N

G. Semantic Analysis

To make the deformation process of soft objects explain-
able, semantic analysis techniques are introduced to the high-
level representation. This semantic analysis can be divided

N, ——
A \
/
/
K/
L iy i 5
Negative Arch Original Positive Arch

Fig. 4. The effect of changing a semantic feature that is identified to describe
the arch degree of a shape on soft object deformation.

into three parts, namely semantic feature identification, latent
deformation analysis, and latent shape planning. By compar-
ing the geometric changes of the visualized inverse samples
reconstructed from the low-dimensional latent variables, the
effect on each shape dimension can be identified; Establishing
a mapping from real soft object deformations to a path in
latent shape space allows us to explore some useful knowledge
behind the common deformations; In contrast to this forward
mapping, an inverse mapping from latent shape space to the
real shape deformation can help carry out a shape planning.

Semantic Feature Analysis: Given a compressed features
zo encoded by function h, we design Alg. 2| for a semantic
feature analysis. In this algorithm, we gradually increase the
p-th feature value with a short step § for zy to form a set of
changed coordinates, g}g’jv, and then we need to update this
set based on the whether generator g is not linear. At last,
we reconstruct the inverse samples {x},x),...,x) } for the
soft object. The visualization of these inverse samples allows
us to identify the semantic meanings for each dimension of
the compressed feature in order to support our high-level
semantic shape analysis (see Fig. 4| for an example of how
semantic feature works). Note that the semantic functions on
certain feature dimension will vary depending on the applied
dimensionality technique and the distribution of data samples.
Thus, visualization is a stable approach to accomplish this
goal.

Algorithm 2: Semantic Feature Analysis

Input: Shape vector x(, order p, step 4, iteration IV,
encoder h, decoder g
Output: Semantic deformation trace of p-th dim Dgp )
1 Compute the coordinate zy with zg = h(x)
2 gl(g’; = {20, 21, ..., 2N} = Interpolation(zg, p, d, N)
3 if g is not linear then

4 L Update Ql(fzu with geodesic Alg. l)
S G = {@h @b @} = g(G10)
¢ DV = Visualizer(g,(f;;h)

7 return D)

Semantic Deformation Analysis: This part examines the for-
mation of a deformation path that serves as the basis of inverse
shape planning. Intuitively, the raw shape data have certain
correlations with the latent variables in latent shape space,
and if the dimensionality reduction technique is invertible,
then the shapes will share the same patterns and rules in the
compressed feature space. Given that the deformation process
of soft objects is continuous in real-world applications, its
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deformation process is also continuous in the latent feature
space. Additionally, by constructing different shape network in
the latent shape space, this continuous deformation path will
travel through different spaces of shape classes, and manifests
some rules of shape deformations in real-world applications.

Algorithm 3: Latent Shape Planning

Input: Current shape x, target shape x., iteration N,
encoder h, decoder g
Output: Planned deformation trace D,
1 Compute the coordinates using (2o, z«) = h(xg, T.)
2 Siow = {20, 21, ..., 2+} = ShortestPath(zo, z.)
3 Snigh = 9(Siow)
4 Giow = {20, 2, ..., 2} = Interpolation(zg, 2., N)
5 if g is not linear then
6 | Update Gy, with geodesic Alg. (1)

7 ghigh = g(glow)
8 D, = {Visualizer(Sp;gp), Visualizer(Gpign )}
9 return D,

Linearly interpolatioir

I3 *
Geodesic interpolation

— X
==: Known shortest shape path
== : Interpolated shape path

[ : Current shape category
: Target shape category

o : Current coordinate in latent space
% : Target coordinate in latent space

Fig. 5. Depiction of the deformation planning in latent shape space.
According to Alg. E|, geodesic interpolated path is generated based on the
results of linear interpolation in the latent space.

Latent Shape Planning: Latent shape planning presents a
solution for an important scenario where the robotic manipu-
lator attempts to manipulate soft objects into the target shape
from the current shape. We design an algorithm to illustrate
this process. Assume that the current shape is represented with
shape vector x, and the target shape is x., after dimension-
ality transformation, the input shapes are transformed to a k-
dimensional latent shape space (£ C Rk). With a encoder g,
the encoded coordinates of zy and z, are readily known in this
latent sspace. As Fig. [5]shows, shapes are represented as nodes
in the latent space. In this space, these nodes are connected to
form different neighbor networks rendered by different colors
based on the ENN algorithm. With the implementation of
shortest path searching algorithm in the latent shape space,
the deformation path from the location of current shape to the
location of target shape based on the known shape network
can be achieved. Let Sj,, denote the shapes lying on the
shortest path from zo to 2z, and let Sy, denote the same
shape vectors but with high dimensions reconstructed from
Siow- However, the shortest path algorithm can only find out
a shortest path built on known shape data set in the shape
space. This shape feature space should include a large quantity
of shapes which are not yet collected and remain unseen to the
dataset . Based on this idea, a straight line can be draw from x°

to £*, which may represent another shortest deformation path.
To judge the rationality of this path, we must reconstruct and
visualize these possible shapes. Accordingly, n intervals are set
to generate 1+ 1 intermediate shape statuses denoted by Gjoy,
and then update it according to geodesic path generation if the
generator is not a linear transformation. At last, a shape set
Ghign comprising transitional deformation is formed. Finally,
these two deformation paths pass through a visualizer and
output the deformation set D,,.

IV. RESULTS

In this section, we describe the experiment setup shown in
Fig. [6] to collect soft object data in order to build LaSeSOM.
During this process, the soft object is only manipulated by
human hands. After building LaSeSOM, this framework is
used to present different levels of representation results in a
robotic teleoperated manipulation task on soft object via Leap
Motion [45]] demonstration.

Point Cloud Data Collection

N

Azure Kinect DK

Marker Data Collection

4 Motion capture cameras

Foam bar with markers Foam sheet

Workstation

Fig. 6. Experimental setups of the shape data collection to build LeSeSOM.
Left shows the setup to collect ordered marker data for a foam bar in a motion
capture system, while right is used to collect unordered point cloud data for
a foam sheet.

A. Data Collection

As shown in Fig. [6] two different soft objects (a foam bar
and a foam sheet) were used to collect deformed shapes. For
the foam bar, the Prime 13 motion tracking system was used to
track the position of each marker mounted on the its surface.
Specifically, four synchronized cameras were installed around
the foam bar which were evenly labeled with eight markers.
The 3D positions of these markers were calculated once the
overlapping position data was transmitted to workstation con-
nected with all cameras through a hub. During the collection,
30 FPS was set to conduct the manipulation. Whereas, the
deformations of the foam sheet were captured with a same 30
FPS in a format of point clouds by an RGB-D camera (Azure
Kinect DK) However, some issues need to be solved with
the raw collected data. For marker data, due to limitations of
the capture system and environmental influences, the system
could generate a percentage (around 8%) of shape frames with
more than or less than eight marker points. Give the small
percentage and high cost to correct them, we simply removed
them. Another issue for marker data is the consistence of
the order of the markers for every shape frame during the
deformation. It was solved by rearranging the orders based on
the computation of the distance during neighboring frames.
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Fig. 7.
(q) presents the nine classes for the foam sheet deformation.

Afterward, all eight marker position coordinates were sub-
tracted by the first marker coordinate to ensure that all shape
frames start from the same position known as the original
point when visualizing the shape. However, for the point
cloud data of the foam sheet, the similar manipulation is not
allowed because point cloud is totally unordered data. But
in order to unify the input dimension for AE net, farthest
point sampling (FPS [37]) was used to ensure that all the
point clouds have a same number of points (512 points).
Finally, data collection process outputted two datasets as Tab.
] summarized. Based on the basic statistics on the shape
of two manipulated objects, shape frames were divided into
different categories as illustrated in the table. Fig. [/| displayed
few samples for each corresponding categories. Note that
the positive and negative categories would be combined or
separated based on different analytical needs.

TABLE I
DATA SUMMARY

Category Set
Category Setl Set2

Plane 250
Line 857 57 Blend #1 Pos. 250
Arch Pos. 1038 825 Blend #1 Neg. 250
Arch Neg. 1339 0 Blend #2 Pos. 250
S Pos. 1570 200 Blend #2 Neg. 250
S Neg. 1482 100 Fold #1 Pos. 250
Helix Pos. 1005 110 Fold #1 Neg. 250
Helix Neg. 957 0 Fold #2 Pos. 250
Total 8248 1292 Fold #2 Neg. 250

Total 8248

(a) Marker dataset
(b) Point cloud dataset

B. Representation Results

1) Low-level: To examine the fitting performance, the co-
efficient of determination R? [46], which is defined as Equ.
(24), is used to quantify the amount of variability explained
by Fourier approximation. As shown in Fig. [0(a), the shape
descriptor becomes more accurate along with the increasing
number of harmonics. For example, the line class shape starts
from 0.7654 when the number of harmonics is set to 1
and ends up with 0.9942 when the model has 6 harmonics.
Specifically, the line and arch class shapes demonstrate better
performance than the other class shapes under the same
number of harmonics. The main reason is that the S-shaped

(¥, S i
e e
‘f;":',-‘ >\

(e

(n)

Visualizations of shape samples of predefined categories. Figures (a) to (h) shows the seven classes for the foam bar deformation, and figures (i) to

and helix class shapes are too complex to represent by using
the Fourier descriptor. However, a Fourier descriptor with
more harmonics entails a higher computing cost. Therefore, a
suitable number of harmonics should be identified to balance
the shape accuracy with the computing cost. In the following
experiment, the number of harmonics is always set to 5.
Zi (yi — fi)

2
> (Wi — )

2) Mid-level: After performing PCA on Fourier coefficients
of marker data from low-level, a suitable number of com-
ponents k is selected according the explained variance, and
the explained variance exceeds 95% when k equals 3 and 4,
respectively. Based on this observations, & = 4 is chosen
to investigate following semantic analysis. In the designed
semantic analysis algorithm, parameters are set with iteration
T =10, k =4, and t = 1 and Fig. [§] (a) to [§] (d) visually
presents the individual semantic effect of the four features.
The reconstructed shapes are represented with a series of
markers, which are linked with splines in different colors and
the blue line shows the original shape. To summarize, the first
component tries to maintain the same shape and alter the angle
as the feature value increases, whereas the second component
tries to describe the arch shape. The third component is
trend to depict the degree of “S” shape, whereas the fourth
component tries to capture helix shape. Though sometimes the
results shows partially combined semantic effect (not single
effect), each feature dimension has a dominant semantic effect,
respectively.

RZ=1- (24)

TABLE 11
NETWORK ARCHITECTURE

Point cloud (Form Sheet)

Marker data (Form Bar)

Input 512x3

3x1 conv, 8, BatchNorm, ReLU
8x 1 conv, 32, BatchNorm, ReLU
32x1 conv, 64, BatchNorm, ReLU
Max pool

FC 256, Batch norm, Sigmoid

FC 512, Batch norm, Sigmoid

FC 1536, Sigmoid

Reshape 5123

Input 8x3

Flatten

FC 8, BatchNorm, ReLU
FC 4, BatchNorm, ReLU
FC 8, BatchNorm, Sigmoid
FC 24, Sigmoid

Reshape 8x3

To compare with the effect of PCA, AE is also performed
on the marker data with an implementation by using Pytorch.
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Fig. 8.

Visual comparison of the semantic features from different dimensionality transformation techniques, where figures (a) to (d) and (e) to (i) respectively

shows the results of the foam bar from PCA and AE. Figures (i) to (q) shows the visualization results of eight (total in 64-dim) semantic features.
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Fig. 9. (a) The performance of Fourier approximation for four main shape

classes of the foam bar by different harmonics; (b) and (c) respectively
show the training and validation errors for the corresponding soft objects;
(d) presents the pre-PCA and post-PCA classification accuracy for the foam
bar.

The corresponding architecture is shown in Tab. The
architecture for the generator (g : Z2 — X) is reverse of
the encoder architecture with two fully connected layers that
outputs reshaped marker coordinates. The latent dimension
is kept at 4 for marker’s dataset. By performing the similar
semantic feature analysis on this latent dimensions, Figs. [§] ()
to [8] (i) visually presents the individual semantic effect of the
four dimensions for code layer of AE. Unlike the result of
PCA, these four dimensions mainly depict “S” shapes from
different perspectives. This is due to the four neural units in
the code layer receive a linear combination from all input data
and the S-shaped category accounts for the majority of the
training dataset. During the training process, the epoch is set
to 400, the batch size is set to 100, and the learning rate is
set to 0.0002, taking with Adam as the model optimizer and
MSE as the loss function. 20% of the samples are separated
to test validation performance. Fig.[9](c) shows that the model
converges quickly on both training data and validation data.
As for point cloud data of the foam sheet, the latent
dimension is kept at 64 with the network architecture as shown
in Tab. [} During the training, the epoch for the model is set to
5000 with Adam as the optimizer, but the loss function is set
to Chamfer distance specified for point sets. The learning rate

is set to 0.0005 and Fig. 0] (b) shows the corresponding loss
trend for training and testing. With the same implementation
of semantic feature analysis, Figs. 9] (j) to (q) shows the eight
reconstructed results out of total the 64-dim code layer. The
red points represent the raw shape and the blue and green one
shows the results of increasing and decreasing feature value,
respectively. The former four mainly describe translation of the
sheet, whereas the latter four capture the degree of curvature
for the foam sheet.

To define the best number k£ for NN, test_size is set to
0.4, and a 5-fold cross-validation is applied to show a stable
precision for each number of neighbors k. As Fig.[9](d) shows,
both pre- and post-PCA kNN models are built with £ iterating
from 1 to 30. Both of these models share a similar trend and
reach a peak under the same k, thereby validating the optimal
number of neighbors. Most importantly, a tiny loss in precision
and a huge reduction in dimensions is especially meaningful
for processing large-scale soft object shape data, such as point
cloud data.
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Fig. 10.  Visualization of shape deformation by using ¢-SNE in a 3D shape

space, where each shape frame is represented as a node in the space, and is
colored according to the different shape labels predicted by the KNN classifier.
(b) shows the linking result of shape reachness relations based on ¢-SNE.
3) High-level: Since it’s hard to visualize a high dimen-
sional shape data space, here only a 3D shape space for
foam bar is visualized through an implementation of t-SNE
as shown in Fig. [[0] The random_state is fixed to ensure
a stable beginning status. The perplexity is set to its default



value. In this chart, each point represents a shape of the manip-
ulated foam bar and simultaneously it is colored according to
different shape categories. Due to the deformation process is
continuous, therefore the distributed points accordingly form a
continuous curve in this shape space. Specifically, the linkings
between different categories denotes that a shape is changing
between different shape categories in the corresponding space.
By collecting all the connections in the dashed circle, the
transformation relation of deforming shapes can be discovered.
For example, arch, S-shaped and helix shape categories can
be transformed. However, the line shape category needs to be
transformed into an arch shape before reaching a s-shape or
helix shape. All of the above findings are aligned with our
knowledge for sponge bar manipulation.

— AP, right

Iﬁwwn
ROt(PrightNorm)

Marker

Leap motion sensors Foam bar Leap motion sensors

Fig. 11.  Architecture of the teleoperated robotic soft object manipulation
task with Leap Motion sensors for the validation of LaSeSOM.

C. Latent Shape Planning

To validate the effectiveness of LaSeSOM in a soft object
manipulation task, we presented a real-time teleoperated ma-
nipulation of a foam bar via Leap Motion [47] demonstration
and the corresponding experimental setup is shown in Fig.
[IT} Two Leap Motion sensors were used to capture the hand
gestures due to that the interaction space provided by a single
sensor is very limited. With the Leap Motion SDK, we can
compute the displacement of palm position dp and the rotation
of palm normal Rot(n,) between the previous and current
frames captured by sensors. Multiplied by suitable weights
w, and wy, 0p and Rot(n,) are adjusted to appropriately
map from the palm space to the robotic working space. Sub-
sequently, two 6-DOF robotic manipulators (UR3) received
the weighted dp and Rot(n,) to compute the poses with the
inverse kinematics module. The Table [I] shows the summary
of shape frames collected from this manipulation task.

1) Semantic Deformation: As Fig.[12] shows, all the shape
frames of this manipulation task for the foam bar are encoded
into a latent shape space built from AE on the Fourier
coefficients. In this space, the resulting deformation path of
the manipulation is represented as a red curve. Different shape
categories of dataset #1 were organized with mesh3D from
Plotly, and then rendered with different colors according to the
predicted labels from KNN. The beginning shape located at the
position of the triangle marker, and then the foam bar started
from the line category area denoted by a blue color. As the
shape deformed, the current point moved continuously toward
the positive arch category denoted by the yellow color in area
#1, and then moved to the negative S-shaped category denoted

D : Line \ ‘
) : Arch Pos. Ny
@D : Arch Neg. ‘(

3 : S Pos. } N ‘
[ : SNeg. J iy

3 : Helix Pos.

@ : Helix Neg. £

] al

: Deformation

Fig. 12. 3D visual deformation trace during the soft object manipulation task
in a compressed shape space, where the red trace travels from the beginning
line category to different shape categories synchronized with the manipulation
task.

by the cyan color in area #2. Subsequently, the foam bar went
back to the positive arch shape from area #2 which form a
identical but inverse path. And so forth, the deformed foam bar
then traveled to a positive S-shaped category, a positive helix
category, and ended up with its original shape state. Therefore,
the entire trace semantically reflects the entire process of shape
deformation in a latent space when manipulating a soft object
and shows a possibility of guiding a manipulator to do shape
planning.

(a) . Target shape

\
\

3 : Line W
(3 : Arch Pos.
(8 : Arch Neg. :
[ : S Pos. A
[ : SNeg. '.‘ k >
[ : Helix Pos. 7
@ : Helix Neg. .
@ : Deformation (d)

Fig. 13.  Visualization of the process of latent shape planning for the foam

bar. Figure (b) shows the beginning shape xo and the target shape x., and
figures (c) and (d) present the shape deformations G ;g5 and Sp;gp, Which
are generated from the shortest path searching on the collected shape set
and the geodesic path-based interpolation on data manifold, respectively. (a)
presents their corresponding deformation pathes in a 3D shape space.

2) Shapes on Manifolds: We use Algorithm 3 to perform
a shape planning through a generator (¢ : Z2 — X&), to
map paths calculated in the latent space into shapes on
the generated manifold (M). Fig. [I3(b) shows a beginning
shape x( and target shape «, of a foam bar. With the
encoder h (illustrated in Table @), we can get encoded
shapes in Z space, which are respectively represented as
zp and z,. Then, two sets of shapes are generated based
on different calculations in Z space. One shape set Sy, iS
calculated by performing an shortest path search algorithm
based on collected data, which is denoted by the blue spline



ZHOU et al.: LASESOM: A LATENT REPRESENTATION FRAMEWORK FOR SEMANTIC SOFT OBJECT MANIPULATION 11

Fig. 14.
geodesic interpolation for foam sheet dataset. Column 1: arc length; Rows 1,
4: shortest path; Rows 2, 5: linear; Rows 3, 6: geodesic.

Shape planning results of shortest path, linear interpolation, and

in the latent space. This shortest path can be represented
as a series of indexes of shape frame in the dataset,
{540, T532, T530, T526, T68, T777, T774, T1920, T5812, T5040 } -
With decoder ¢, Sjp can be mapped to the manifold of
shape data, denoted by Spiqp in the shape data space X.
Another shape set Gj;q, is generated by a linear interpolation
between zy and =z, at first, and then an iterative updating
on each coordinate with geodesic path illustrated in Alg.
[[} This initial linear interpolated path is marked by a red
spline in the figure. Figs. [[3] (c) and (d) show the resulting
deformation processes from a geodesic interpolation and
shortest path, respectively. We can clearly observed that
the deformation process with geodesic path interpolation is
smoother compared with the one generated by a shortest
path. Fig. [[4] shows a few point clouds on the shortest path,
linear interpolation, and geodesic interpolation curves along
with their arc lengths for the foam sheet. The shortest path
gives the longest arc length compared with the other two
methods, because the collected dataset could not collect all
the equally changed shape on deformations. Although, the
geodesic curve on the manifold presents a shorter arc length
compared with linear interpolation, their difference is not
significant, which indicates that the manifold generated by
generator architecture for form sheet has little curvature, even
non-linear. For more experimental results, please refer to the
video via: https://sites.google.com/view/lasesom.

V. CONCLUSIONS

In this paper, we present a generic data-driven representation
framework for soft objects in bimanual manipulation tasks.
This 3-level framework can be divided into 4 layers. Layer
0 forms low-level shape features for soft objects, and layers
1 and 2 mainly deals with dimensionality transformations to
produce a semantic internal representation for soft objects. The
last layer detects deformation knowledge in a latent space and

solves shape planning with geodesic path generation on the
data manifold.

The experimental results show the viability of using this
framework for different levels of representation. Specifically,
the low-level layer can extract valid features from both or-
dered data and unordered data. In mid-level layers, semantic
techniques can identify the semantic meaning for latent vari-
ables; High-level layers can extract the accurate deforming
relations between different shape categories; In addition, a
geodesic path-based interpolation algorithm has validate the
effectiveness for soveling a shape planning problem.

The proposed framework has several limitations. For exam-
ple, it is still hard to clearly explain the semantic meaning
for several dimensions in AE code layer with currently de-
signed semantic analysis algorithms. Besides, a data-driven
framework mainly depends on an elaborate data collection
procedure. However, when the environment of manipulation
tasks has been changed, this framework needs some time to
fit the models so as to form a valid representation again.

As future research, the implementation of a manipulator
with LaSeSOM based feedback control for 3D soft objects
will be carried out. Currently, we are also working on the
development of shape deformation planning with constraints
(obstacles, occluders, etc.). Another extension of this paper is
to explore some learning paradigms on soft object manipula-
tion, such as imitation learning from a real-time human action
or video recordings.
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