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A Sensor-based Robotic Line Scan System with
Adaptive ROI for Inspection of Defects over

Convex Free-Form Specular Surfaces
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David Navarro-Alarcon, Senior Member, IEEE

Abstract—In this paper, we present a novel sensor-based
system to perform defect inspection tasks automatically over
free-form specular surfaces; the system is composed of a robotic
manipulator equipped with a line scanner system. Our scanning
approach uses a mesh model to segment the convex surface of the
object into areas with similar curvatures, then, adaptively adjusts
the camera’s scanning range to ensure the complete coverage of
the surface. We propose a new projection registration algorithm
that uses measurements from a depth sensor to robustly localize
and register the specular workpiece in real-time. We develop a
complete image processing pipeline for automatic defect detection
from the captured images. To validate the proposed formal
methodology, we report a detailed experimental study with the
developed robotic inspection prototype.

Index Terms—Line scan sensor, depth sensor, defect inspection,
path planning, sensor-guided robots, specular surfaces.

I. INTRODUCTION

SURFACE defect inspection is important in modern manu-
facturing, as defects compromise the quality and value of

products. The common practice of many factories is to employ
numerous workers to manually perform the inspection task,
which is costly, time-consuming, and vulnerable to subjective
results. With the development of effective vision sensors
and image processing algorithms [1], automatic vision-based
defect inspection system presents a feasible and sustainable
solution to the existing problems.

Although automatic defect inspection system has seen great
progress in recent years (e.g. [2–5]), its geometric adaptability
and robustness in various inspection tasks remain challenging.
That is particularly critical for the inspection of free-form
specular surfaces [6], as they require flexible scanning con-
figurations (which contrasts with the static setups used for flat
surfaces), and specialized imaging systems (to cope with the
high reflection of shiny materials). Free-form specular objects
are common in many industries, particularly the automotive
industry, therefore, it is important to develop effective methods
to automate their defect inspection. The goal of this paper is
to develop a feasible robotic solution to this problem.
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In the past decade, several automatic inspection systems
leveraging on various sensors have been applied in different
areas, such as sewers [2], rail surfaces [3], textured materials
[4], LED chips [5], etc. Due to their simple structure, area-
of-interest (AOI) based systems are widely used in real-time
defect inspections of (typically) flat surfaces, such as hot-rolled
steel sheets [7] and fabrics [8]. Specialised setups are required
when applying AOI-based systems into non-flat objects, in-
cluding sensors, illumination, fixtures, etc. For example, [9]
developed a dual-light system to properly inspect the curved
surface of a metal sphere. However, these AOI-based systems
usually have fixed scanning configurations, which limits their
usage to few types of object shapes.

In addition to the geometry, the reflectivity of the surface has
also been studied by researchers. [10] developed a method that
visually analyzed the reflection of a known projection pattern
over the surface, where both the pattern generator and the
camera were manipulated by a robot. Based on sensor fusion,
[11] addressed the automatic defect detection on car body
surfaces during a painting process, where only flat regions
with smooth changes in slope, concavities, edges, and corners
were considered. Despite of these recent promising results,
the automatic inspection of free-form specular surfaces still
remains an open research problem.

Robotic dimensional inspection presents a more flexible
alternative for the inspection task. This approach uses a
computer-controllable manipulator equipped with 2D/3D vi-
sion sensors [12, 13] to scan various surface shapes with
active robot motions. In this paper, we build on this kind of
configuration to perform defect inspection on convex specular
surfaces [14]. The conceptual overview of our new sensor-
guided solution is shown in Fig. 1. The original contributions
of this work are as follows1:
• A path planning algorithm with an adaptive region-of-

interest (ROI) and K-means segmentation for inspect-
ing free-form specular surfaces based on the acquisition
model of the adopted sensors.

• A new registration algorithm based on iterative closest
point (ICP) for real-time localization of observed specular

1An earlier version of this paper will be presented in June 2021 at the
IEEE Int. Conf. on Robotics and Automation (ICRA) [15]. In contrast with the
preliminary paper [15], this version has the following new methods/content: (i)
An adaptive ROI algorithm that guarantees the completeness of the inspection
task; (ii) A new geometric model that enables the analysis of the line scan
camera; (iii) An optimization algorithm that improves the path planning
efficiency; (iv) A detailed comparison study of the proposed method with
various baselines.
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Fig. 1: Overview of the automatic robotic defect inspection pipeline. Given
a mesh model of the workpiece, we generate a feasible scanning path.
Subsequently, our robotic system executes the designed procedures to finish
the inspection task.

objects.
• A detailed experimental study to validate the performance

of our automatic inspection system and compare it with
existing baselines.

The rest of this paper is organized as follows: Sec. II
describes the path planning algorithm, Sec. III presents the
robotic inspection methods, Sec. IV presents the results and
Sec. V gives conclusions. The notation used along this paper
is listed in Table I.

TABLE I: NOTATIONS OF THE PARAMETERS USED IN THIS STUDY

Parameter Descriptions

~xO
i , ~n

O
i , O i-th point and its normal in point cloud O

~cO, ζO the center and size of O
~qO
i , εi a specified vector of O and its exterior instance
N,nj the number of regions and patches
~sj , Sj j-th feature vector ~sj of region Sj

γij ,Γj the angle between ~nO
i and ~sj and the maximum

λj ,Λt termination instance of Sj and the sum at time t
βK , βC angle deviation threshold of K-means and camera
θ, θ∗ rotation angle around ~z and optimal solution
SX , SY X and Y coordinate sets of a region
~VF ,~VD ,~VL field of view, depth of view and moving vector
~r, δ projection basis and the corresponding scalar
Ωj the number of region division along ~VF

HY , ~hjk, Hjk Y coordinate set and average normal of patch Hjk
~ψ the inspection point of the sensor on the surface
~ρ, ~k,~i,FP position, Z-axis and X-axis of a frame
~pj , ~p

′
j the scanning poses on the edge with respect to Sj

φ+, φ− rotation cost to the next X-axis ±~i′
Ô, O estimated pose and actual pose of the workpiece
ϕ, r angle and distance in polar coordinates
~lϕ, Lϕ ejection line and its corresponding buffer set
dl, dc distance to ejection line and the center ~cproj
~η manipulation plane representation
~ρB , ~kB ,~iB position and orientation of pB in the robot’s frame
~ρi, ~πi, ~Πi i-th position and orientation pose for manipulator
q, l resolution and acquisition line rate of the camera
v moving speed of the robot
~eH , κ position vector and size of a pixel in the image frame
~uH , ~UB the image pixel in local frame and in global frame
A,w angle of view and working distance of the camera
ξ,∆ circle of confusion and diagonal of the sensor
F , f f-number and focal length of the len
µ, σ2 mean value and variance
Ψ, χ, τ precision, recall and accuracy in defect detection

II. PATH PLANNING
In this section, we present a complete and formal method-

ology to plan the active motions of the line scan sensor.
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Fig. 2: 3D representation information of the workpiece. (a) Mesh model. (b)
Sampled point cloud and the corresponding preprocessing procedure.

A. Sampling and Preprocessing
Since the mesh models consist of many vertices and surfaces

(which might be difficult to process), we sample points from
the mesh model to facilitate the path planning. [16] provides
a useful sampling solution by randomly selecting a given
number of points on triangles. A typical convex mesh model
and its corresponding sampled point cloud are shown in Fig.
2. Due to its sampling uniformity and complete coverage,
the obtained sampled point cloud O consisting of points
O = (~xO1 , ~x

O
2 , ...) preserves the geometric information of all

faces. However, only the exterior surface of the workpiece
is taken into consideration in sensor-based defect inspection.
Therefore, it is necessary to filter out unrelated points, as
illustrated in Fig. 2(b). The center ~cO of the point cloud O is
computed as

~cO =

ζO∑
i

~xOi /ζO. (1)

where ζO is the size of the point cloud O. Next, we utilize the
normal vectors (~nO1 , ~n

O
2 , ...) generated from the mesh model

to search for points on the exterior surface. For that, we firstly
specify a vector ~qOi = ~xOi − ~cO, then compare its direction
with the corresponding surface normal ~nOi :

εi(~q
O
i · ~nOi ) =

{
0, ~qOi · ~nOi < 0

1, else
(2)

The data point ~xOi is saved only when εi = 1, which means
~qOi and ~nOi are in the same direction. This method effectively
extracts points on the exterior surface of convex objects.

B. K-means Region Segmentation
The surface of the considered free-form object has a

smoothly varying curvature. To inspect defects with vision
sensors, we divide the surface of the object into approxi-
mately “flat” sub-regions, which ensures that defects can be
highlighted and avoids unwanted reflections caused by the
light source. Then, region segmentation is formulated as a
clustering analysis problem [17] of surface geometric features
(viz. positions and normals). In our method, we use K-means
clustering [18] to partition the point cloud O.

Our algorithm takes the points of O and their corresponding
normals as input, as shown in Fig. 3(a). In standard K-means
algorithms, the number of clusters N greatly affects the quality
of the classification; It typically requires several trials to find
an optimal N by traditional methods [19]. In this paper, we
propose a new method to automatically tune N . The algorithm
is based on a two-looped 1D search, with the inner loop
for classification and the outer loop for updating N . The
termination condition is defined when the maximum intra-class
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Fig. 3: Conceptual representation of K-means-based region segmentation.
(a) Input information: i-th point ~xO

i and its corresponding normal ~nO
i . (b)

Clustering for each sample ~nO
i . (c) Recompute the feature vector ~sj of each

region Sj .

difference is smaller than a threshold βK . The entire procedure
is given in Algorithm 1 and illustrated in Fig. 3.

For the outer loop, we denote the feature vectors of the
N -cluster set by [~s1,~s2, · · · ,~sN ] and initialize them with
random values. Afterwards, the procedure goes into the inner
loop, which is composed of two steps: 1) classification and
2) update. In classification, for each ~nOi , we calculate its
similarities γij with every feature vector ~sj as follows:

γij = arccos(~nOi ·~sj/(
∣∣~nOi ∣∣ · |~sj |)). (3)

Then, we find the cluster Sj that produces the samllest γij
and assign ~nOi to it. After the classification step, each ~nOi is
assigned to its corresponding region Sj .

The next step is to determine whether the classification
has met the termination condition. For each cluster Sj , the
termination instance λj is computed from the maximum intra-
class difference Γj as:

λj =

{
0, Γj > βK

1, else
for Γj = max

i
γij (4)

The sum Λt of the instances λj from every region Sj at this
iteration t is Λt =

∑N
j=1 λj . If Λt equals to the value of

the current N , the current segmentation is acceptable and the
algorithm reaches termination. Otherwise, the iteration con-
tinues. In this stage, we should consider the search direction
since the algorithm contains two loops, the inner that clusters
with respect to N and the outer that increases the value of N .
The adjustment depends on the performance of Λt. If at the
iteration step t, the performance decreases (i.e. Λt < Λt−1),
it indicates that the current N is not ideal and the inner loop
must stop; a new outer loop starts with N ← N + 1. If the
performance improves (i.e. Λt ≥ Λt−1), the search within the
inner loop continues.

Before switching to the next inner iteration, all feature
vectors ~sj are updated to improve the representation level:

~sj =
1

ζj

ζj∑
i=1

~n
Sj

i /||
1

ζj

ζj∑
i=1

~n
Sj

i ||, (5)

where ~nSj

i and ζj are i-th normal and the size of region Sj
respectively.

The proposed algorithm only takes normal features of the
region Sj into consideration, which can lead to a high sparsity
of the clustered points within the same region. Therefore,
Euclidean cluster extraction [20] is implemented as a post-
processing step to verify if it is necessary to subdivide the
region Sj into two new regions according to the location of
the points in it.

Algorithm 1 K-means Region Segmentation
Input βK , O.
Output Sj , j = 1, 2, ..., N
Routine

1: while Λt < N do
2: Initialize N normal vectors ~sj randomly, j = 1 : N
3: while Λt ≥ Λt−1 do
4: for (~xOi , ~n

O
i ) i = 1 : ζO do

5: Compute angle γij ← (3)
6: j∗ ←− arg minjγij , push ~xOi → Sj∗
7: end for
8: Compute Λt ← (4)
9: Update ~sj , j = 1 : N ← (5),

10: end while
11: N ← N + 1
12: end while
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Fig. 4: Geometric acquisition model of the line scan camera with linear
motion. (a) Cuboid coverage generation process. (b) Mathematical model of
the coverage cuboid and completeness validation.

C. Adaptive ROI Based Path Planning

The proposed planning algorithm takes the segmented re-
gions Sj as inputs, and outputs the optimized scanning path.
Since the scanning of the line sensor needs to synchronize with
the robot’s motion, the main idea of our method is to utilize
a shortest path to cover the entire region Sj . However, the
irregular shapes and scattered distribution make the path plan-
ning very challengiing. Hence, we establish a local coordinate
frame FS with respect to each region Sj . The transformation
between the local frame FS and the object frame FO consists
of three parts TZ ,Txy,TY , the detailed explanation is:

1) TZ : Rotate ~sj to Z-axis ~z = [0 0 1]T .
2) Txy: Translate to X-Y plane Z = 0.
3) TY : Rotate angle θ∗ around ~z to minimize the projection

length along Y-axis ~y = [0 1 0]T . The angle θ∗ is
obtained by iteration search

SY ′ = SX · sin θ + SY · cos θ. (6)

θ∗ = arg min
θ

(maxSY ′ −minSY ′). (7)

where SX and SY are X and Y coordinate sets of region Sj
respectively.

The aim of our adaptive ROI method is to adjust the
scanning coverage of the vision sensor to fit the various shapes
of Sj . As a 1D vision sensor, the geometry acquisition model
of the line scan camera is depicted in Fig. 4(a). Capturing a
single horizontal line per frame, the scanning coverage of the
sensor is modeled as a rectangle at each moment, consisting of
the depth of view ~VD and the field of view ~VF . Combining
with the linear motion of the sensor, a series of rectangles are



4

w

Z

Y X

(a) (b)Ωj

X

YZ
Sj Hjk�hjk

�hjk

min(Sx′) max(Sx′)

�i

�k

�i

�knj

�VF

FH
F

�ρ �ρ
′

�ψ ψ�cH

Fig. 5: Further region segmentation and linear path planning. (a) Patch
segmentation along horizontal and vertical directions. (b) Linear path planning
with respect to patch Hjk .

captured and then integrated as a cuboid along the moving
direction ~VL. Hence, we model the scanning capacity of the
sensor during a motion as the volume of the generated cuboid.

With the geometric scanning model, we hold a definition
that the inspection completeness is achieved if all points are
within the cuboid. The mathematical model is illustrated in
Fig. 4(b). Let’s suppose the linear scanning starting from a
pose p, depicted as a frame FP , whose position, Z-axis and
X-axis are ~ρ, ~k,~i respectively. Thus, the inspection point of
the sensor on the surface is ~ψ = ~ρ− w · ~k, where w denotes
the working distance between the camera and the surface. For
a point ~x of the surface, we specify a vector ~m = ~x− ~ψ. A
point ~x being within the cuboid should meet the conditions
that the projection scalar of its corresponding vector ~m to the
bases ~VD, ~VF , ~VL should be smaller than their magnitudes
|~VD|, |~VF |, |~VL| at the same time. The projection scalar can
be computed by:

δ = ~m ·~r/ |~r| (8)

Here, ~r is the projection basis, which are ~VD, ~VF , ~VL re-
spectively.

In addition, normal similarity, here defined as the maximum
allowable angle difference between the surface normal and
the camera’s facing direction, is also a necessary condition to
guarantee the performance of the vision sensor.

To ensure the completeness of the scan based on the
geometric sensing model, our algorithm further segments each
region Sj into patch Hjk. This 1D segmentation has two
steps, each along the horizontal and the vertical directions, as
shown in Fig. 5(a). For the horizontal direction, we evaluate
the coverage capability over the width of the region Sj by:

Ωj = d(max(Sx′)−min(Sx′))/
∣∣∣~VF

∣∣∣e, (9)

where de is the ceiling function; Sx′ = SX ·cos θ∗−SY ·sin θ∗
is the x coordinate set of region Sj in the local frame FS .
When Ωj equals to one, the segmentation along ~VF is not
required. Otherwise, we divide region Sj into Ωj sub-regions
(thus the number of regions N increases). The next step
is to divide each region Sj into several patches Hjk along
the vertical direction. Similar to Algorithm 1, we segment
region Sj into nj patches and iteratively increase nj until
meeting the termination conditions. The conditions depend on
the inspection completeness, including the geometric cuboid
coverage model and normal similarity, which are validated by
(8) and (4), respectively.

Next, we plan a linear scanning path with the same orien-
tation for each patch Hjk, see Fig. 5(b). Here, we utilize two
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Fig. 6: Complete path optimization with respect to entire free-form surface.
(a) Scanning sequence arrangement based on distance-optimal criteria. (b) Ro-
tation angle minimization in the process of adjacent scanning pose switching.

frames FH ,F ′H to describe two poses of the motion. Their
origin ~ρ, ~ρ′ locate on:

~ψ = [cx min(HY ) cz]
T ~ψ

′
= [cx max(HY ) cz]

T
(10)

~ρ = ~ψ + w · ~hjk, ~ρ′ = ~ψ
′
+ w · ~hjk (11)

where ~ψ and ~ψ
′

are two inspection points of the sensor on
patch Hjk; cx and cz are elements of ~cH = [cx cy cz]

T

computed by Eq. 1 with respect to patch Hjk. For orientation,
since ~k is defined as ~k = −~hjk, the X-axis~i of the frame FH
is:

~k = RZ · ~z, ~i = RZ · ~x (12)

where ~x = [1 0 0]T , the rotation matrix RZ is solved with an
axis-angle representation.

Finally, we need a transformation between the local frame
FS to the original object frame FO to obtain the six degrees
of freedom (DoF) path pose p:

p =
{

TP · ~ρ,TR · ~k,TR ·~i
}

=
{
~ρO, ~kO,~iO

}
(13)

where TP = T−1Z T−1xy T−1Y and TR = T−1Z T−1Y . Here,
~kO,~iO, ~ρO represent vectors in the object’s frame FO. Note
that ~ρ, ~k and~i are represented as 4×1 vectors in homogeneous
coordinates for transformation here.

D. Nearest Neighbor Search

Now, we need to connect all the path sections to generate
the complete scanning path for the entire free-form object.
To improve the inspection efficiency, the shortest path criteria
is adopted, which equals to minimizing the scanning time
since we keep the velocity of the camera constant during the
scanning task. Thus, this issue is formulated as the following
constrained optimization problem:

minimize
NP−1∑
i=1

C(pi, pi+1)

where C(pi, pi+1) describe the cost switching from ~pi to
~pi+1, including the position cost and the orientation cost.
NP = 2 ×

∑N
j=1 nj is the total number of the path poses.

Considering the constraints brought by the segmentation and
the adaptive ROI path planning, we convert the optimization
to a sorting problem and solve it by the Nearest Neighbor
Search [21], which are discussed with respect to the position
and the orientation separately in the following.

For position, only the switch between regions can be op-
timized due to the fixed motion distance within each region.
For each region Sj , we extract the path poses (pj , p

′
j) on the
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Ô

O

T
B

OT
B

Ô
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edges and obtain 2N poses in total. We formulate the position
optimization as the coverage path planning (CPP) [22] to find
the shortest path visiting every node in the graph, while the
difference of our case is that the moving process is within a
region rather than a node, namely the start pose and the end
pose of the node are different, shown in Fig. 6(a). At first, all
regions Sj locate in the unplanned region box and the planned
path is empty. The initial search benchmark p0 is the current
pose of the robot manipulator. During a loop, we compute
the distances between p0 and 2N poses (p1, p

′
1, · · · , pN , p′N ).

Let’s suppose that p′j is nearest to the benchmark ~p0 and we
assign region Sj as the next neighbor and send it to the planned
path box. After one iteration, the search benchmark switches
from p0 to pj . At the same time, the corresponding region Sj
is popped out from the unplanned pose set. Then, the search
loop continues until the unplanned pose box is empty.

Another optimization section focus on the orientation, as
shown in Fig. 6(b). To illustrate the idea, we define a switch
between patches H(~k,~i)→ H ′(~k′,~i′). According to the char-
acteristics of the line sensor, ~k is fiexed while ~i is adjustable,
namely ±~i′ are both suitable. However, switching from~i to +~i′

or −~i′ have different costs φ+, φ− computed by Eq. 3. For the
optimization, we should select the one with the smaller cost
by {

~i′ ← +~i′ φ+ ≤ φ−
~i′ ← −~i′ else

(14)

With this rule, we can optimize the orientation of the next
patch H ′ according to the current patch H .

III. ROBOTIC INSPECTION
In this section, we provide the detailed robotic procedures

about the automatic sensor-based defect inspectioin.

A. Sensor-Based Projection Registration
To deliver the active motion of the line sensor, a trans-

formation TB
O from the object’s frame FO to the robot’s

frame FB is required, namely the workpiece localization in
the robot’s frame FB . Recently, depth sensors have been
widely used for 3D vision perception [23]. However, their
performance is severely affected by the high reflection of
specular surfaces [24]. Hence, we design a novel projection
registration algorithm to deal with this issue, formulating it as
a coarse-to-fine registration issue, as shown in Fig. 7(a).

The hand-eye calibration TB
C is implemented via AR mark-

ers. FO is the object’s frame whose transformation to the
robot’s frame FB is desired. FÔ denotes a coarse estimation
of FO, whose transformation TB

Ô
is a prior according to the

configuration of the workspace. Mounted on the top of the
workspace, the depth sensor captures the pose of the object

O. As illustrated in Fig 7(b), the captured point cloud O loses
the vision information of the specular surface due to its high
reflection. However, the boundary of the blocked area can
be used to describe the outer boundary of the object. The
extraction of this boundary Obd includes several steps. Firstly,
we use pass-through filters to narrow down the ROI of O
and transform the point cloud to the robot’s frame with TB

C ,
denoted as O2D. In the end, we establish a 2D local polar
coordinate system F2D in the manipulation plane whose origin
is ~c2D of O2D:

~lϕ = [r cosϕ − r sinϕ]T (15)

where r and ϕ represent the distance to ~c2D and the angle to
the X-axis of F2D respectively. The conversion to Cartesian
coordinates with respect to ϕ is tanϕ · x + y = 0. For the
points of the boundary, we define them as the nearest points
to the origin along different directions. Due to the discreteness
of the point cloud, we use its distance dl to the line to find
out if a point is on a line

dl =
∣∣~xO2D · ωϕ

∣∣ , ωϕ = [sinϕ cosϕ]T (16)

For each ejection line ~lϕ, the points whose distance dl to
~lϕ is smaller than a threshold are saved in a buffer set Lϕ.
Within the set, the point whose distance dc to ~c2D is smallest
is considered as a component of the boundary Obd.

In addition, we also need to find out the boundary Ôbd of
the estimation pose Ô. Firstly, we project Ô to the given plane
~η to get Ôproj by

Ôproj = Ô − (~η · Ô) · ~η (17)

Next, we extract the outer boundary Ôbd of Ôproj via [25].
Finally, we utilize ICP algorithm [26] to align Ôbd and Obd,
thus obtaining the transformation matrix TÔ

O between FÔ and
FO. Hence, combining TB

Ô
and TÔ

O, we can obtain the entire
transformation matrix TB

O = TB
Ô
·TÔ

O.

B. Robot Control Framework

Given the 4 × 4 transformation matrix TB
O =

[
RB
O|~tBO

]
,

consisting of 3× 3 rotation matrix RB
O and 3× 1 translation

vector ~tBO , we obtain the path of the active motion

pB =
{

TB
O · ~ρ

O,RB
O · ~kO,RB

O ·~iO
}

(18)

Note that ~ρO is represented as 4 × 1 vector in homogeneous
coordinates for transformation.

To define the pose of the robot end-effector for each path
point, the pose vector will be

~Πi =
[
~ρTi ~πTi

]T
(19)

where ~Πi is a 6 × 1 pose vector consisting of the position
vector ~ρi and the orientation vector ~πi. For position, ~ρB =
TB
O · ~ρ

O directly defines the desired position. For orientation,
we need to solve the complete rotation Rπ with respect to
~kB = RB

O · ~kO and ~iB = RB
O · ~iO with axis-angle form,

similar to Eq. 12. Then, we obtain the rotation vector ~π by
Rodrigues’ rotation formula [27] according to Rπ .
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adjustment for unit magnification.

Fig. 9: Details about the automatic defect detection and visualization. (a)
Complete pipeline of digital image processing for defect detection. (b)
Conceptual explanation about the mathematical model of the image mapping.

The line scan camera captures one line at a time, and
stack the horizontal rows of pixels to generate a 2D image,
see Fig. 8. The sampling rate of the camera needs to be
synchronized with the robot’s motion to ensure the scanning
completeness and avoid repetition. The synchronization is
achieved by defining:

|~VF |/q = (1/l) · v (20)

where q is the resolution of the vision sensor, l is the
acquisition line rate with units in seconds, and v is the linear
velocity of the manipulator.

C. Image Processing

Digital image processing is also necessary for the proposed
sensor-based defect inspection solution. In this section, we
design an image processing pipeline for our system based on
OpenCV [28], as shown in Fig. 9(a).

Taking raw images as input, we firstly adopt image thresh-
olding for enhancement. Edge features are suitable for our
task by displaying sudden changes in gray level. Therefore,
we next extract edge features from the enhanced images by
adopting a robust Canny edge detector [29]. Some dust may
also be detected by the high-resolution sensor and disturb the
defect inspection. Therefore, we include the deeper contour
sketching and area approximation [30] in our algorithm to
enrich the feature descriptors. Finally, we tune the allowable
defect area threshold for judgement. This criteria also benefits
the operators to exclude the “fake” defects.

D. Image Mapping

In addition to the number of defects, the distribution of
defects also provides an intuitive understanding about the
quality of the products. Leveraging the model of the object, we
obtain a 3D visualization result through mapping the detected
defects in 2D images to the 3D model, as shown in Fig. 9(b).

Router

Power

Lighting

Workpiece

Line Scan

RGB-D

UR5 Robot

communication link(a)

RGB-D camera
PC

Router UR5 Manipulator

Image Acquisition Power

(b)

Fig. 10: The platform of our proposed autonomous robotic inspection system.
(a) Experimental configuration. (b) Syetem Architecture.

As discussed above, a 2D image corresponds to a patch Hjk

with a linear motion with fixed orientation. Thus, we assume
that the distance between the image acquisition system and
the inspection surface remains the same during the process.
The capture of each image starts at pose ~ΠH and stops at
pose ~Π

′
H . Hence, we use pose ~ΠH as the mapping frame

FH to find out the 3D position ~uH corresponding to a pixel
~eH = (ex, ey) in the 2D image by

~uH =
[

(ex − q/2) · κ ey · κ w
]T

(21)

where κ =
∣∣∣~VF

∣∣∣ /q represents the pixel size in the image.
Since ~uH is a 3 × 1 vector representing the position of the
defects in the local mapping frame FH , we transform it to
the robot’s frame FB via ~UB = TH · ~uH , where 4 × 4
transformation matrix TH corresponds to pose ~ΠH . Note that
~UB , ~uH are represented as 4 × 1 vectors in homogeneous
coordinates for transformation.

IV. RESULTS

A. Experiment Setup

Fig. 10(a) illustrates the configuration of our proposed
robotic platform. An Orbbec Astra depth sensor is mounted
on the top of the manipulation space for real time work-
piece localization. To control the image acquisition system to
achieve a 6-DOF scanning path over the workpiece, our system
includes a UR5 manipulator from Universal Robots. We also
design an instrumented customised holder to equip the image
acquisition system with the end-effector of the manipulator
under a flexible and precise illumination configuration.

Fig. 10(b) conceptually depicts the architecture of the sys-
tem. The image acquisition sub-system consists of a line scan
camera (Basler raL2048-48gm GigE camera) and a uniform
line illumination source (LTS-2LINS300-W from LOTS com-
pany). An analog control box with high power strobe provides
adjustable voltage to the light source. To communicate differ-
ent components in the system, we establish a network with the
help of a router via the TCP/IP socket and ROS [31]. Hence,
the Linux PC is able to simultaneously control all components
in real time.

Velocity and acceleration of the manipulator are empirically
set as 0.05m/s and 0.05m/s2 respectively due to safety
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Fig. 11: Segmentation results with respect to different free-form surfaces and
different termination thresholds.

reasons. The magnitude of ~VF and ~VD of the vision sensor
can be calculated according to [32]∣∣∣~VF

∣∣∣ = 2w tan(A/2), ξ ≈ ∆/1500,
∣∣∣~VD

∣∣∣ ≈ 2w2Fξ/f2

(22)
where A, ∆, ξ, F , f denotes the angle of view, sensor
diagonal, circle of confusion, f-number, and focal length of
the sensor, respectively.

B. Segmentation Performance
Flat region segmentation is one of the prerequisites of

high-quality image acquisition, whose biggest challenge is the
diversity of object shapes. To validate the robustness of our
proposed K-means based region segmentation algorithm, we
present the implementation results in terms of different mesh
models, denoted as o1, o2 and o3 respectively. Inspired by
Otsu’s algorithm [35], we design the segmentation deviations
of intra-class and between-class to measure the segmentation
performance statistically,

µS =
1

N
·
N∑
j=1

ζj , σ2
S =

1

N
·
N∑
j=1

(ζj − µS)2

σ2
I =

1

N
·
N∑
j=1

1

ζj

ζj∑
i=1

γij

~µB =
1

N
·
N∑
j=1

~sj , σ2
B =

1

N
·
N∑
j=1

γ(~sj , ~µB)

(23)

where γ(~sj , ~µB) computes the angle between ~sj and ~µB
according to Eq. 3. For comparison, three commonly used
segmentation algorithms in point cloud processing, namely
Difference of Normal (DON) [33], Conditional Euclidean
Clustering (CEC) [20] and Region Growing (RG) [34], are
considered as references. The comparison results are shown
in Table. II.

Note that all the parameters of the reference algorithms
have been fine-tuned to obtain best performances. Among
the results, maxj Γj , measuring the maximum intra-class
difference, is the most important evaluation criteria. Setting
the termination threshold as 28o, our algorithm is able to find
the optimal solution regarding to the corresponding conditions,

(a) (b)

Fig. 12: Designed robotic validation experiment. (a) Real inspection experi-
ment. (b) Simulation environment with the segmented regions results.

RGB-D

(a)

CAD

max

min

RGB-D

max

min

(b)

TCP

Fig. 13: Conceptual results of workpiece localization. (a) Comparison between
depth camera capturing and Computer-aided Design (CAD) mesh model. (b)
Comparison between depth camera capturing and measurement by the robot
manipulator.

while other algorithms fail to ensure the availability of the final
segmentation. The other evaluation indexes, NS , σ2

S , σ
2
I , σ

2
B

are auxiliary indicators for the clusters distribution. The op-
timal segmentation is to divide the free-form surface evenly
in terms of size and position, while minimizing the intra-class
difference and maximizing the between-class difference. The
results show that our method can maintain stable performance
with respect to different free-form surfaces. Basically, the
failure and bad results of other algorithms are caused by the
inconsistency between their parameters and the criteria. The
common idea of them is to look for points meeting the pre-
defined conditions, such as the angle differences and Euclidean
distances among the search range of initialized points and
absorb them into the corresponding clusters. The drawback
of the reference algorithms is that they only consider the local
information around the points on the edges of the clusters
instead of the global performance of the clusters.

To validate the robustness of our proposed algorithm in
terms of shapes and required smoothness, we conduct multiple
segmentation trials on several free-form objects with different
thresholds, as shown in Fig. 11. We can conclude from
these intuitive results that our K-means unsupervised region
segmentation is suitable for various convex free-form objects
under different conditions.

C. Registration
Another prerequisite of image acquisition is the precise

localization for the workpiece in the robot’s frame. A specular
side-mirror workpiece is taken as the experimental subject in
this section, as shown in Fig. 12.

To evaluate the performance of our indirect registration
algorithm, we take the shape errors and the position errors into
account. The ground truth of the shape and position are pro-
vided by the mesh model and the measurements from the end-



8

TABLE II: COMPARISON OF THE SEGMENTATION PERFORMANCE OF DIFFERENT ALGORITHMS ON THREE FREE-FORM OBJECTS

maxj Γj (◦) NS σ2
S σ2

I σ2
B(◦)

Algorithm o1 o2 o3 o1 o2 o3 o1 o2 o3 o1 o2 o3 o1 o2 o3
Difference of Normals [33] 33.8 90.3 87.1 33 8 22 135.2 401.8 1030.7 0.6 4.7 2.7 25.0 32.9 50.0
Conditional Euclidean [20] 32.3 85.0 87.6 39 76 126 91.3 32.3 120.7 0.5 0.5 0.9 23.8 55.3 41.6

Region Growing [34] 34.7 20.6 17.8 53 561 1060 90.2 0.2 0.3 0.4 0.04 0.01 21.2 36.0 64.0
Our Method Alg. 1 26.8 24.8 27.99 6 26 66 22.8 4.0 9.9 12.8 9.3 8.3 31.7 50.0 57.7

NS : Number of segmented regions. σ2
S : Variance of region size. maxj Γj : Maximum angle difference among different regions Sj . σ2

I : Intra-class variance
of region Sj . σ2

B : Between-class variance of region Sj .

TABLE III: RESULTS OF REGISTRATION ACCURACY

Types dmin(cm) dmax(cm) µD(cm) σD(mm)

Shape 0.004 0.680 0.167 1.134
Position 0 1.288 0.765 2.182

dmin and dmax is minimum and maximum value of the Euclidean distance.
µD and σD is the mean and standard variance of the distance respectively.

Fig. 14: Image acquisition with area scan vision sensor. (a) Experimental
setup. (b) Example of high-quality image acquisition with dome light as
illumination.

effector of the manipulator. To quantify the error, Hausdorff
distance [36] is used, and the mathematical comparison results
are shown in Table. III. Fig. 13(a) shows the comparison
between the boundary extracted from the point cloud captured
by depth camera and the boundary extracted from the mesh
model. Since we focus on the shape retrieval in this part,
the comparison is executed after the ICP alignment. This
comparison visualizes that our indirect registration is suitable
to describe the original shape of the workpiece. Fig. 13(b)
illustrates the position registration error. The low localization
error can guarantee the scanning performance of the registered
path.

D. Image Acquisition

To validate the detection performance of our proposed
system, we take a specular side-mirror from the automotive
industry as an experimental subject. Several defects are added
manually on the specular surface and the observation results
from professional workers are regarded as the benchmarks of
this inspection task. Fig. 12 illustrates the designed experi-
ment. The upper free-form specular surface is selected as our
experiment subject. The colored point cloud visualizes the seg-
mentation result of our K-means based region segmentation.

To highlight the advantages of our system, a traditional
inspection configuration with area scan sensor [7] is used
for comparison, see Fig. 14(a). Dome light is employed to
avoid an illumination spot caused by the specular surface. With
the illumination condition, we are able to obtain high quality
images when the defects are spotted, as shown in Fig. 14(b).

(b)

(a)

Fig. 15: Comparison of the image acquisition quality (red regions represent
the captured defects, blue regions display the spot phenomenon). (a) Captured
by area scan vision sensor. (b) Captured by our line scan vision sensor.

(a) (b)

Sobel

Equalization

Our

Canny [100, 200]

Our

Fig. 16: Conceptual comparison about image processing for defects detection.
(a) Comparison with histogram equalization and Sobel operator. (b) Case study
about the parameters of the Canny Edge Detector.

TABLE IV: COMPARISON OF THE DEFECT DETECTION PERFOR-
MANCE OF DIFFERENT PIPELINES ON THE SELECTED WORKPIECE

Pipeline TP FP FN Ψ χ τ

Sobel Operator [37] 40 5 10 0.889 0.8 0.818
Equalization [38] 59 120 9 0.330 0.868 0.760

Canny [29] [100, 200] 44 40 2 0.524 0.957 0.870
Our method 51 8 2 0.864 0.962 0.943

TP, FP and FN are true positive, false positive and false negative respectively.
Ψ, χ and τ are precision, recall and accuracy respectively.

As illustrated in Fig. 15(a), the area scan sensor is unable
to focus on the ROI over the free-form surface, which com-
promises the quality of the image. Compared with the fixed
acquisition configuration, our flexible image acquisition sub-
system with line scan sensor enables the adjustment of the
scanning path according to the shape of the surface. Thus, the
alignment between the vision sensor and the surface is ensured
to obtain high-quality images, as shown in Fig. 15(b).

E. Defect Detection

The final step of the automatic defect inspection is the image
processing and the unqualified defects statistics. In this section,
we also include some common image processing techniques
as references to highlight the advantages of our pipeline.
Specifically, the histogram equalization [38] is adopted as a
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Fig. 17: Defects detection results conducted by our pipeline. (a) Satisfactory
result. (b) Some failure cases. (c) The distribution visualization results via
image mapping based on the detected defects

comparison in the image enhancement step; the Sobel operator
[37] is chosen as a comparison in the edge detection; we
also tune the parameters of the Canny detectors to see their
influence on the detection accuracy.

Based on the ground truth provided by the professional
workers, we implement the comparison with the baselines,
shown in Table. IV, where the precision Ψ and recall χ are
used to evaluate the performance.

Ψ = TP/(TP + FP ), χ = TP/(TP + FN) (24)

In Eq. 24, TP, FP and FN denotes the true positive, false
positive and false negative respectively. Since we weigh the
missing defects more than the wrong predictions, recall plays
a more important role than precision in our experiment.
Hence, the final accuracy is defined as a weighted sum of
the precision and recall: τ = 0.2 × Ψ + 0.8 × χ. Although
it involves some FP cases, our algorithm can minimize the
probability of missing defects. Hence, our algorithm has the
best performance compared with the references. Illustrated
in Fig. 16(a), Sobel operator is so susceptible to the noise
that it misses some defects occasionally. Although histogram
equalization is good at improving the contrast of the image,
the regions with defects are easily overexposed. As a double-
threshold algorithm, the edge identification by Canny detectors
depends on the minimum and maximum thresholds. When the
thresholds are set as (100, 200), the algorithm is able to detect
the majority of defects, but it involves more FP cases compared
with that of our final selection (200, 300).

Other detection results obtained by our proposed algorithm
is shown in Fig. 17. Fig. 17(a) displays the successful results.
Note that the detection that captures only a part of the defects
is also considered as the true positive samples. Besides, there
are some failure cases shown in Fig. 17(b). The edges of the
workpiece are considered as defects due to the sudden gray
level change, playing as false positive cases. In addition, some
true defects are missed due to the low contrast between the
defects and the background.

Fig. 17(c) illustrates the defect visualization result via image
mapping. Note that the displayed defects are selected by oper-
ators. Although we cannot obtain a precise 3D reconstruction
model with the proposed method, this visualization result can
provide an intuitive distribution of the defects on the specular
surface.

V. CONCLUSIONS
In this paper, we developed a new sensor-guided automatic

defect inspection system for convex free-form specular sur-

faces. Mounted on a robotic manipulator, a high-resolution
vision sensor is able to execute surface scanning in a flexible
manner. Based on the prior mesh model of the workpiece,
our K-means based region segmentation is robust to segment
free-form surfaces to relative flat regions without troublesome
tuning. Our path planning algorithm ensures the inspection
completeness through the further patch segmentation and the
analysis of the vision sensor model. The defect inspection
is fully automatic through real-time projection registration
feedback and image processing procedure. The experiment
results illustrate that our sensor-based system is effective
in automatic defect inspection and has superiority over the
reference methods.

However, our proposed prototype exists some limitations.
Firstly, the performance of the system is merely validated
in the ideal laboratory environment. More tests with more
workpieces under real manufacturing environments are re-
quired to improve the robustness of our system. Secondly, the
design of the custom-built end-effector needs improvements
to enlarge the scanning space of the image acquisition sub-
system. Finally, the proposed image processing algorithm
cannot classify unqualified defects at this stage. Further re-
search can be conducted on the image processing regarding to
the recognition and classification using deep neural network
(DNN) [39].
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